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Fig. 1. We present the first wave optics based fiber scattering model. We use a 2.5D method, where the geometry is specified using its 2D cross section while
the wave fields are 3D. Our wave-simulation-based azimuthal scattering functions are combined with conventional longitudinal functions to create BCSDFs
for rendering. Our new model is able to produce diffraction and interference effects that cannot be captured by previous ray-based models. This figure shows a
spiderweb iridescence example. (a) is a photograph of this effect by Marianna Armata [2019a; 2019b]. (b) is rendered using our wave-based BCSDF and (c) is
rendered using a previous ray-based BCSDF. Our wave optics fiber scattering model is able to produce strong color effects with hues similar to the photograph
while the ray model produces a colorless appearance. Similar iridescence effects can also be seen in eyelashes or a Dandelion seed head [Wall 2011].

Existing fiber scattering models in rendering are all based on tracing rays

through fiber geometry, but for small fibers diffraction and interference are

non-negligible, so relying on ray optics can result in appearance errors. This

paper presents the first wave optics based fiber scattering model, introducing

an azimuthal scattering function that comes from a full wave simulation.

Solving Maxwell’s equations for a straight fiber of constant cross section

illuminated by a plane wave reduces to solving for a 3D electromagnetic

field in a 2D domain, and our fiber scattering simulator solves this 2.5D

problem efficiently using the boundary element method (BEM). From the

resulting fields we compute extinction, absorption, and far-field scattering

distributions, which we use to simulate shadowing and scattering by fibers

in a path tracer. We validate our path tracer against the wave simulation and

the simulation against a measurement of diffraction from a single textile fiber.

Our results show that our approach can reproduce a wide range of fibers with

different sizes, cross sections, and material properties, including textile fibers,

Authors’ addresses: Mengqi (Mandy) Xia, Cornell University; Bruce Walter, Cornell

University; Eric Michielssen, University of Michigan; David Bindel, Cornell University;

Steve Marschner, Cornell University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2020/12-ART252 $15.00

https://doi.org/10.1145/3414685.3417841

animal fur, and human hair. The renderings include color effects, softening

of sharp features, and strong forward scattering that are not predicted by

traditional ray-based models, though the two approaches produce similar

appearance for complex fiber assemblies under many conditions.
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1 INTRODUCTION
Most computer graphics assumes that light travels as rays. When

objects are sufficiently large compared to visible light wavelengths,

ray optics is a good approximation that is accurate enough for most

relevant appearance effects. Wave optics provides an alternative

model that characterizes light as an electromagnetic wave that obeys

Maxwell’s equations, which is more accurate at all scales. Wave op-

tics is important for simulating light interaction with small objects,

but is more difficult to compute.

Light scattering from fibers is important for rendering textiles,

animal fur, and human hair in visual effects and other applications.
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By definition fibers are very thin, and though many successful mod-

els for fiber scattering have been built with ray optics, the scale of

many types of fibers, especially textile fibers and animal fur fibers,

calls the accuracy of this approach into question.

In this paper, we propose a new fiber scattering model that is built

on wave optics simulation, and we study the differences between

its predictions and those of conventional ray-based models. To the

best of our knowledge, this is the first wave optics fiber scattering

model in computer graphics.

Conducting full wave scattering simulations is expensive, as it

requires resolving both electromagnetic fields and geometry at well

below the scale of visible light wavelengths. Furthermore, creating

a complete scattering model requires many simulations to account

for all possible illumination directions. This paper shows a way to

make this computation tractable through a series of simplifications:

• Like most fiber scattering models we assume a separable form

for the model, as a product of longitudinal and azimuthal

scattering distributions, and in this paper we work only on

the azimuthal distribution, adopting a longitudinal model

from prior work [d’Eon et al. 2011].

• For modeling azimuthal scattering we assume that fibers are

extrusions with perfect translational symmetry. We exploit

this symmetry in a “2.5D” wave scattering simulation that

computes 3D electromagnetic fields using values only in a

2D cross-sectional slice.

• To avoid the need to discretize the volume of the fiber and the

space surrounding it, we employ a boundary integral formu-

lation that reduces the set of unknowns to a 1D discretization

of the fiber’s planar cross section curve.

With careful attention to efficiency in implementation, this makes

it possible to compute azimuthal scattering for fibers of arbitrary

cross sections and arbitrary material properties, for all incident and

scattered directions and all relevant wavelengths, in a precompu-

tation, resulting in tabulated azimuthal scattering functions to be

used in rendering.

The following sections detail our techniques (Sections 4, 5, 6), their

validation (Section 6), and the simulation and rendering results (Sec-

tion 8). We confirm our simulation against prior implementations,

verify that rendering a single-fiber scene matches the simulation

results, and provide a simple validation against measurement. We

examine the differences and similarities between the results of ray

and wave models, and the renders show a reassuringly good match

for larger fibers at most angles, substantial differences in color and

highlight shapes for smaller fibers and complex cross section shapes,

and dramatically stronger forward scattering in the wave model.

1.1 Assumptions and limitations
Building a truly complete, general, and practical wave-based fiber

scattering model is a major undertaking, and this first model comes

with several limitations.

• Like most fiber models, we assume the scattering function

can be factored into the product of an azimuthal scattering

function and a longitudinal scattering function. However,

since the wave simulation has no notion of separation into

different scattering modes, we use a single longitudinal distri-

bution, so our model does not include effects from structural

asymmetries like the cuticle scales in human hair.

• Ourmodel is for the far field and does not account for incident

light that varies across the width of a fiber or views where

individual fibers are wider than pixels. The simulation results

do contain this information but it is not carried over to the

renderer.

• Path tracing assumes that scattering from different fibers can

be treated independently and we maintain that assumption,

potentially leaving out effects due to interference between

light scattered coherently by different fibers.

• Although our simulator handles arbitrary polarization, for

simplicity of integrating the new scattering model into cur-

rent rendering systems we assume light incident on a fiber is

always unpolarized.

2 RELATED WORK
Before discussing how we apply wave optics to develop a wave-

based fiber scattering model, we will first review the conventional

ray-based fiber scattering functions, previouswave-based reflectance

models in Computer Graphics, and the computational electromag-

netics tools that are available for this problem.

Fiber scattering models. Marschner et al. [2003] introduced a hair

scattering model based on a dielectric cylinder, which represents the

scattering function as a sum of the R, TT and TRT lobes and factors

each lobe into the product of an azimuthal scattering function and

a longitudinal function. Their model improved on previous models

in matching measurements and is widely used. Following this work,

Zinke andWeber [2007] formalized the notion of Bidirectional Curve

Scattering Distribution Function (BCSDF) and proposed a near-field

model (an approach adopted later adopted by Chiang et al. [2015]

for its speed).

Zinke et al. [2009] added a diffuse component to the model so that

it better matchesmeasurements and Sadeghi et al. [2010] adapted the

model to be more artist friendly. d’Eon et al. [2011] fixed an energy

conservation problem with Marschner’s model by introducing an

elegant new longitudinal component and an azimuthal component

based on numerical quadrature. Later, d’Eon et al. [2014] proposed

a non-separable reflectance lobe by making the longitudinal distri-

bution dependent on relative azimuth.

Fiber scattering models are also essential for realistic fur render-

ing. Yan et al. [2017, 2015] introduced a double cylinder model that

models the medulla in the interior of fibers to better match animal

fur appearance.

Azimuthal variations are important to fiber appearance. Khun-

gurn and Marschner [2017] proposed a new azimuthal scattering

function for elliptical hair fibers, revealing optical and appearance

differences compared to circular fibers. Aliaga et al. [2017] intro-

duced a new fiber scattering model specifically for textile fibers.

They ray traced different textile fiber shapes, using measured mate-

rial properties, to precompute scattering functions. Both of these

methods used a tabular approach to represent fiber scattering, as

our work also does.
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Fiber scattering is also studied in the Applied Physics commu-

nity. Linder [2014] studied circular cylinder scattering using the

Mie solution. They simulated scattering media consisting of such

cylinders using a Monte Carlo framework and applied their results

to analyze scattering by paper fibers. Similar to our work, they also

observed strong forward scattering. However, their work only con-

siders circular cylinders while our work is for general cross-section

shapes.

Wave optics reflectance models. Wave optics has been used exten-

sively for rough surface reflectance modeling. For example, models

have been developed for surfaces with random [He et al. 1991] or

periodic [Stam 1999] stationary statistics, and for predicting aver-

age [Dong et al. 2016] and fine-scale appearance [Yan et al. 2018]

for surfaces with known geometric microstructures. These surface

models used variants of either the Beckmann-Kirchoff [Beckmann

and Spizzichino 1987] or Harvey-Shack [Harvey 1979] scattering

approximations. Werner et al. [2017] proposed a model based on

non-paraxial scalar diffraction theory to render scratch iridescence.

Toisoul and Ghosh [2017] proposed a measurement method and a

data-driven rendering approach to render complex diffraction effects

in real-time. While more tractable, these scalar wave approxima-

tions are less accurate for highly non-planar geometry and neglect

multiple scattering, making them unsuitable for simulating fiber

scattering. In our work, we use full vector wave simulations, which

are more accurate.

Thin-film interference produces colorful iridescence; Smits and

Meyer [1992] and Gondek et al. [1994] built early models for iri-

descent specular BRDFs, and Belcour and Barla [2017] extended

the Microfacet model to incorporate thin-film iridescence. They

proposed a preintegration scheme for the spectral dimension to

preserve efficiency while preventing color artifacts from spectral

aliasing. Our azimuthal results can similarly oscillate rapidly as a

function of wavelength. However, since they are not in analytic

form, no simple preintegration method is available, and instead we

densely sample the spectral dimension.

Wave optics in volume scattering has also been studied in the

Graphics community [Bar et al. 2019; Frisvad et al. 2007; Sadeghi

et al. 2010]. In comparison, our work focuses on a different type of

particles: cylindrical particles, and handles arbitrary cross sections

by full wave simulation.

The most detailed previous wave optics work in graphics used

finite-difference time-domain (FDTD) simulations of periodic mi-

crostructures of butterfly wings [Musbach et al. 2013]. FDTD re-

quires finely discretizing an enclosing 3D volume, which limits the

feasible problem size. In contrast, our work uses the boundary el-

ement method (BEM), which only discretizes the boundary of the

scatterer and scales better to handle our larger geometries.

Computational electromagnetics. Computational electromagnet-

ics (CEM) is a discipline that develops computational methods to

understand electromagnetic phenomena, and it applies to optics

since light is an electromagnetic wave. The most frequently used

algorithms in CEM are the finite-difference time-domain (FDTD)

method, the finite element method (FEM), and the boundary element

method (BEM), which is also referred to as the method of moments

(MoM) [Rylander et al. 2012]. FDTD [Kane Yee 1966; Taflove and
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y

Fig. 2. An illustration of the commonly adopted longitudinal-azimuthal
parameterization for fiber scattering models. Each of the directions 𝜔𝑖

and 𝜔𝑟 in 3D is parameterized using the polar angle 𝜃 , defined as the
angle between 𝜔 and the plane perpendicular to the cylinder axis, and the
azimuthal angle 𝜙 , defined in that plane.

Hagness 2005] solves the differential form of Maxwell’s equations

on a structured grid of points. The advantage of FDTD is that the

discretization is straightforward and implementation is relatively

easy. However, FDTD is not as flexible as the other two methods as

it only works on Cartesian grids [Kunz and Luebbers 1993]. FEM

can also be used to solve the time-domain problem, and it works

much better for complex geometry, but both FDTD and FEM require

discretizing the entire 3D space.

BEM [Huddleston et al. 1986; Wu and Tsai 1977] reformulates

the problem in the frequency domain into an integral equation on

the scattering surface, then solves this lower dimensional problem

using finite elements. Similar to FEM, BEM also handles complex

geometry well, and the main advantage of BEM is the low number

of unknowns as we only need to solve unknowns on the boundary

of the scatterers. In this work, we project from 3D to 2D, then use

BEM on a discretization of the 1D contour of the fiber cross section.

3 BACKGROUND

3.1 Fiber scattering models
Fiber scattering models, used to render hair, fur and cloth fibers, usu-

ally represent individual fibers as cylinders and use the Bidirectional

Curve Scattering Distribution Function (BCSDF) to characterize the

scattering properties of a fiber. Similar to the BSDF, it describes

outgoing radiance 𝐿𝑟 as an integration of incident radiance 𝐿𝑖 mul-

tiplied by the BCSDF 𝑆 :

𝐿𝑟 (𝜔𝑟 , 𝜆) =

∫
𝐿𝑖 (𝜔𝑖 , 𝜆) 𝑆 (𝜔𝑖 , 𝜔𝑟 , 𝜆) cos𝜃𝑖d𝜔𝑖 . (1)

Wewill write the BCSDF in spherical coordinates as 𝑆(𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 , 𝜆)

using the angles illustrated in Figure 2. Many models write the

BCSDF as a sum of reflective and transmissive modes 𝑆𝑝 , with each

mode 𝑆𝑝 factored into a longitudinal function𝑀𝑝 and an azimuthal

function 𝑁𝑝 . In this work, we assume a single longitudinal function

𝑀0:

𝑆 (𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) = 𝑀0(𝜃𝑖 , 𝜃𝑟 )

∞∑
𝑝=0

𝑁𝑝 (𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) (2)

We discuss the generalization to full 3D geometry, which would

remove this assumption, in Section 9. Our main contribution is a
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Fig. 3. An overview of fiber scattering in ray and wave optics. Top: in ray optics, introducing the fiber into a beam causes some rays to be blocked (shadowing)
and the blocked rays to be redirected (scattering). Middle: in wave optics, introducing the fiber produces a scattered field which adds with the incident field; the
analogous effect to shadowing, known as extinction, is caused by interference between these fields. Bottom: far-field intensity simulated using the two models
for a Gaussian beam normally incident on a circular fiber; the incident distributions match, but extinction (a measurement of intensity lost to interference)
removes more power from the beam than shadowing, and wave scattering redistributes this energy as stronger scattering in near-forward directions.

new azimuthal function 𝑁wave(𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) that is fully wave optics

based, which replaces the sum of azimuthal lobes; that is:

𝑁ray(𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) =

∞∑
𝑝=0

𝑁𝑝 (𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) ≈ 𝑁wave(𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆). (3)

We adopt the longitudinal scattering function 𝑀0 of d’Eon et al.

[2011], which guarantees energy conservation.

3.2 Differences between ray- and wave-based models
The ray and wave viewpoints have fundamental differences that

lead to challenges in integrating a wave solution into a path tracer.

In both theories, the process of scattering from a fiber begins with

incident illumination, and introducing the object causes far-field

intensity in some directions to decrease and in other directions to

increase, but both the distribution and overall magnitude of the

change are different, as well as the mechanism (Figure 3).

In ray optics, the incident illumination is a light field, assigning a

radiance to each ray passing through the domain. Introducing the

fiber causes shadowing as some rays are blocked, and scattering as

light is redirected to other rays. The effect on the far-field distri-

bution is found by integrating across the fiber width to produce a

shadowing intensity that subtracts from the far-field intensity and

a scattering intensity that adds to it.

Scattered intensity integrates to the total power (per unit length

understood throughout this section) scattered by the fiber, and shad-

owing intensity integrates to the total power incident on the fiber;

the difference between these is the power absorbed by the fiber.

In wave optics, the incident illumination is a wave field, a complex-

valued function of space that satisfies the time-harmonic Maxwell’s

equations. Introducing the fiber adds another region with different

material properties and causes the fields to change. The fields we

observe before/after introducing the scatterer are the incident/total

fields; the difference between the total and incident fields is an

outward-propagating wave field called the scattered field. Each field

has a far-field intensity distribution, but due to interference, the total

intensity is not just the sum of the incident and scattered intensities.

The difference between the total field intensity and the sum of

incident and scattered field intensity can be readily computed from

the fields, and we call it the extinction intensity. The extinction

intensity and scattered intensity can each be integrated to find the

total extinction power and total scattered power. The total extinction

might be greater than or less than the total shadowing computed

by the ray model.

The results of a wave simulation are in terms of extinction and

scattered intensity, whereas scattering from a fiber in a path tracer

operates by shadowing the incident rays and introducing scattered

rays. Extinction plays a role analogous to shadowing; both describe

the total amount of radiant power that interacts with the fiber. But

there is a problem: the total extinction does not match the total

ACM Trans. Graph., Vol. 39, No. 6, Article 252. Publication date: December 2020.
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(a) ray (b) wave, 100𝜇𝑚 (c) wave, 10𝜇𝑚 (d) wave, 1𝜇𝑚

Fig. 4. We compare renders of one layer of aligned circular white fibers
lit by a point source. In the first row, the light is close to the camera; in
the second row, the light behind the fiber layer and on the centerline. The
first column is rendered using the ray model; the second, third and fourth
columns are rendered using our wave optics model with 100 𝜇𝑚, 10 𝜇𝑚,
and 1 𝜇𝑚 radius respectively. In the large scale limit, the wave result (b) and
the ray result (a) are very similar, except in the forward scattering setting
the wave result shows a stronger forward scattering peak. However, as the
size of the fibers decreases, we observe more colors along with broadening
and smoothing of the highlight that are due to diffraction and interference
effects, which cannot be predicted by the ray model. The last row shows 𝜙𝑖
vs. 𝜙𝑟 plots of the azimuthal scattering function for 𝜃𝑖 = 0. The 1𝜇𝑚 plot
shows strong colors, which manifest themselves in the renders (d).

shadowing, and is often greater. That is, the ray theory commonly

underestimates the total magnitude of the change caused by the

presence of the fiber; or more informally, a fiber can scatter or absorb

more light than is geometrically incident upon it.

This creates major energy conservation problems if the wave

scattering results are used directly in a path tracer. The difference in

total extinction between the two theories can be summarized by the

extinction cross section, which is the fiber width required to shadow

as much power as is extinguished under the wave model. The extinc-

tion cross section is a function of wavelength and incident direction

in both 𝜃 and 𝜙 , unlike the geometric cross section, which depends

only on incident 𝜙 . We propose to account for this difference by

using the extinction cross section for fibers in the renderer instead

of the original geometric cross section, as detailed in Section 5.1.

In addition to the energy conservation issue, wave-based scatter-

ing has no notion of discrete reflection and transmission events, so

it cannot be separated into different modes by counting interactions.

Thus we represent the wave-based azimuthal scattering function as

a single mode and multiply it with a single longitudinal function,

which currently prevents modeling the asymmetries due to cuticle

scales in hair and fur.

4 2.5D WAVE SIMULATOR
The physical setting for our scattering simulation is the same as in

previous ray-based fiber scattering models: we illuminate a straight

dielectric fiber of constant cross-section with a collimated beam

E2,H2

E2,H2

E1,H1

E1,H1

ε2

ε2

ε1

ε1

J1

J2

M1

0,0

0, 0

M2

Fig. 5. Separation of interior and exterior fields via surface equivalence.
The original problem (left) has fields both interior and exterior to the fiber
with a change in material properties at the surface. We denote the exterior
and interior regions as region 1 and 2 respectively. The original problem is
transformed into a pair of problems (right), each in a homogeneous medium,
with surface currents generating the field on one side and zero on the other
side.

and predict the far-field distribution of scattered light. As with pre-

vious methods for computing the azimuthal pattern [Marschner

et al. 2003], the translational symmetry of the problem removes one

dimension (𝜃𝑟 ) from consideration, and this enables the 3D electro-

magnetic fields to be determined by a 2D calculation involving the

cross-sectional shape of the fiber, an approach we refer to as 2.5D.

The rest of this section sketches our approach to formulating

the scattering problem as a set of integral equations over the 1D

boundary of the fiber’s 2D cross section, numerically solving them

using BEM, and interpreting the solution as a scattering function

suitable for rendering. The general approach of using BEM to solve

scattering problems is fairly standard in CEM, though this particular

formulation is specialized to the problem of dielectric fibers. For

a more complete treatment of the topic of electromagnetic wave

scattering from objects, see Poggio and Miller [1970], Wu and Tsai

[1977], and Huddleston et al. [1986].

4.1 Problem setup
The boundary of the fiber is the extrusion of a curve Γ in the 𝑥-𝑦

plane along the 𝑧 axis. This surface divides space into exterior and

interior regions, denoted 1 and 2 respectively, with different material

properties (𝜖1, 𝜇1) and (𝜖2, 𝜇2) as in Figure 5 (left). For a dielectric

fiber with complex refractive index 𝑛 + 𝑗𝜅 surrounded by free space,

𝜖1 = 𝜖0, 𝜖2 = (𝑛 + 𝑗𝜅)
2𝜖0, and 𝜇1 = 𝜇2 = 𝜇0, where 𝜖0 and 𝜇0 are the

permittivity and permeability of free space.

The fiber is illuminated by a plane wave propagating in direction

−𝜔𝑖
1
. The incident electric and magnetic fields (i.e. fields in the

1
Using linearity, other kinds of illumination can be handled by first expressing them as

sums of plane waves.
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Fig. 6. The figure contains azimuthal scattering plots for the non-circular fiber cross sections used in this paper and the supplemental material. The top two
rows show 𝜙𝑖 vs. 𝜙𝑟 plots at 𝜃𝑖 = 0, with x-axis representing 𝜙𝑖 and y-axis representing 𝜙𝑟 . We integrated the scattering functions over wavelength to obtain
the RGB representations in these colored plots. Our wave results (second row) contain rainbow colors and other features not present in the ray results (top row).
The ray-based scattering functions for non-elliptical fibers are obtained by tracing rays through the cross sections (represented as line segments with linearly
interpolated normal vectors). Compared to the ray-based distributions, the wave simulation produces much smoother distributions on the non-elliptical cross
sections. In the bottom row, we plot 1D slices from the upper plots, specifically the square root of the scattering distribution at 𝜆 = 400nm and 𝜙𝑟 = 50

◦.

absence of the fiber) are

E𝑖 (r) = E𝑖 (0) 𝑒 𝑗k·r

H𝑖 (r) = H𝑖 (0) 𝑒 𝑗k·r

H𝑖 (0) = −k × E𝑖 (0)

𝜔𝜇0

(4)

where E𝑖 (0) and H𝑖 (0) define the wave’s intensity and polarization,

and the wavevector is k = 𝑘𝜔𝑖 . The wavenumber is 𝑘 =
2𝜋
𝜆

for light

of wavelength 𝜆 and angular frequency 𝜔 = 2𝜋/(𝜆
√
𝜖0𝜇0). Here and

in what follows, a time dependence 𝑒 𝑗𝜔𝑡 is assumed and suppressed.

The presence of the fiber alters the fields and we call the resulting

fields the total fields E𝑡 ,H𝑡 . In the following subsections we will

solve for the total fields by expressing them as sums of simpler fields

E1,H1, which are zero in the interior of the fiber, and E2,H2, which

are zero in the exterior. We further subdivide the exterior total fields

into the incident fields and the scattered fields E𝑠 ,H𝑠 such that

E𝑡 = E1 + E2; H𝑡 = H1 + H2 (5)

E1 = E𝑖 + E𝑠 ; H1 = H𝑖 + H𝑠 (6)

The scattered fields propagate outward from the fiber and will be

the key to computing the BCSDF for rendering.

The fields obey the time-harmonic Maxwell’s equations relating

corresponding currents and fields

∇ × E = −M − 𝑗𝜔𝜇H
∇ × H = J + 𝑗𝜔𝜖E.

(7)

Here J and M are time-harmonic electric and magnetic current

densities.
2

4.2 Splitting the problem via surface equivalence
The surface equivalence principle [Love 1901; Schelkunoff 1936]

states that fields E,H that exist in a source-free region can be gener-

ated by surface currents J,M residing on the region’s boundary. This

equivalence lets us transform our scattering problem into a pair of

problems concerning unbounded homogeneous media, which are

amenable to solution using Green’s functions (Figure 5).

The surface equivalence principle implies that the fields E𝑠 ,H𝑠

(i.e. the source-free part of the fields in region 1) can be generated

by surface currents J1,M1 residing on the boundary and radiating

in unbounded free space. Likewise, E2,H2 can be generated by sur-

face currents J2,M2 residing on the boundary and radiating in an

unbounded medium consisting of fiber material. The fields E1,H1

can be made to vanish in region 2, and the fields E2,H2 can be set

to zero in region 1, by requiring that

M1 = −n̂1 × E1, J1 = n̂1 × H1

M2 = −n̂2 × E2, J2 = n̂2 × H2

(8)

where n̂1 = n̂ and n̂2 = −n̂1 are surface normal vectors pointing

towards region 1 and 2 respectively.

2
Although magnetic currents do not really exist, it is mathematically useful to include

them in the formulation. In our case these will be fictitious currents introduced on the

fiber boundary to divide our problem into two simpler homogeneous domains.
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At a dielectric interface, the tangential components of the total

electric and magnetic fields must be continuous such that

n̂ × E1 = n̂ × E2; n̂ × H1 = n̂ × H2 . (9)

We can enforce these interface continuity constraints by requiring

J = J1 = −J2; M = M1 = −M2 . (10)

In regions of space where 𝜖 and 𝜇 are constant, Maxwell’s equa-

tions reduce to the Helmholtz equations [Harrington and Fields

1961]

∇2E + 𝑘2E = 𝑗𝜔𝜇J − 1

𝑗𝜔𝜖
∇(∇ · J) + ∇ ×M

∇2H + 𝑘2H = 𝑗𝜔𝜖M − 1

𝑗𝜔𝜇
∇(∇ ·M) − ∇ × J

(11)

whichwe can use to compute the fields generated by a set of currents.

In particular from J1 and M1 we can compute the scattered fields

E𝑠 ,H𝑠 and from J2 and M2 we can compute the fields E2,H2 (using

the material parameters for regions 1 and 2 respectively). Therefore

we use the currents to parameterize the fields in solving for them.

This leads to the source field relations in the following section, which

further enable the boundary integral formulation of the scattering

problem.

4.3 Source field relations in 2.5D
In this sectionwe develop a formal solution to (11) in a homogeneous

medium, specialized to fibers with translational symmetry along

the 𝑧 axis. There is no need to compute the dependence of J,M, or

any other quantities in the problem in the 𝑧 direction, because the

problem symmetry determines it. This will result in equations that

describe the fields in 3D space using only currents defined on the

1D curve Γ. It’s important to recognize that these currents and fields,

while they are defined over a 2D domain, are still 3D quantities,

and the vectors have components both in the 𝑥-𝑦 plane and in the 𝑧

direction.

We adopt the coordinate system shown in Figure 2, and represent

the 3D and 2D coordinates using r = 𝑥 x̂ + 𝑦ŷ + 𝑧ẑ and 𝝆 = 𝑥 x̂ + 𝑦ŷ.
The incident field can be expressed as

E𝑖 = E0𝑒
𝑗k𝜌 ·𝝆𝑒 𝑗𝑘𝑧𝑧 , H𝑖 = H0𝑒

𝑗k𝜌 ·𝝆𝑒 𝑗𝑘𝑧𝑧 (12)

where k = k𝜌 + 𝑘𝑧 ẑ and 𝑘𝜌 = |k𝜌 |. Since the 𝑧 dependence of this
source field is a complex exponential, a translation in 𝑧 corresponds

to multiplying the field by a global scalar phase factor. Since (11) is

a linear PDE, scaling the source will scale all the quantities in the

problem by the same factor; hence all the fields and currents inherit

the same 𝑧 dependence as E𝑖 ,H𝑖 :

E(r) = E(𝝆)𝑒 𝑗𝑘𝑧𝑧 , H(r) = H(𝝆)𝑒 𝑗𝑘𝑧𝑧 ,

J(r) = J(𝝆)𝑒 𝑗𝑘𝑧𝑧 , M(r) = M(𝝆)𝑒 𝑗𝑘𝑧𝑧 .
(13)

Applying the 𝑧 dependence described above to the Helmholtz equa-

tion (11), we obtain the 2.5D wave equations. With the correspond-

ing Green’s function, we can write out the 2.5D source field relations
as convolutions of the electric and magnetic sources on the right

hand side of (11) with the Green’s function. The result has a similar

form for E and H and can be written in terms of integral linear

operators L and K as:

E(𝝆) = − 𝑗𝜔𝜇LJ(𝝆) − KM(𝝆), (14)

H(𝝆) = − 𝑗𝜔𝜖LM(𝝆) + KJ(𝝆). (15)

where

(LX)(𝝆) =

[
1 +

1

𝑘2
∇∇·

] ∫
Γ

𝑒 𝑗𝑘𝑧𝑧𝐺
(
𝝆, 𝝆 ′) X(𝝆 ′

)𝑑𝝆 ′
����
𝑧=0

, (16)

(KX)(𝝆) = ∇ ×
∫

Γ

𝑒 𝑗𝑘𝑧𝑧𝐺
(
𝝆, 𝝆 ′) X(𝝆′

)𝑑𝝆 ′
����
𝑧=0

. (17)

In (16) and (17), L is a linear operator operating on electric (mag-

netic) currents to produce contribution to the electric (magnetic)

fields; K is a linear operator operating on magnetic (electric) cur-

rents to produce contribution to the electric (magnetic) fields.𝐺(𝝆, 𝝆 ′
)

is the Green’s function for the 2DHelmholtz equation and represents

the field at 𝝆 produced by a line source at 𝝆 ′
; it satisfies

∇2𝐺
(
𝝆, 𝝆 ′)

+ 𝑘2

𝜌𝐺
(
𝝆, 𝝆 ′)

= −𝛿
(
𝝆, 𝝆 ′) . (18)

This equation’s solution is

𝐺(𝝆, 𝝆′
) =

1

4 𝑗
𝐻

(2)

0
(𝑘𝜌 |𝝆 − 𝝆 ′ |) (19)

where 𝐻
(2)

0
is the zeroth order Hankel function of the second kind.

The 2.5D source field relations (Equations (14) and (15)) are formal

solutions to Maxwell’s equations, in that they express the fields

directly as integral operators applied to the current densities. The

source field relation equations apply separately to the interior and

exterior problems: they relate J1, M1 to E𝑠 , H𝑠 using the 𝑘 , 𝜖 and

𝜇 for region 1; and likewise they relate J2, M2 to E2, H2 using the

parameters for region 2. And once J1 andM1 are known, they can be

used to compute the scattered fields in the exterior. More derivation

details can be found in the supplemental document.

4.4 Solving for the currents
We now have the ingredients needed to assemble an integral equa-

tion for J,M that we can discretize and solve. Combining the bound-

ary current constraints in Equations (8), (10) with source field re-

lations, we can eliminate the fields, resulting in integral equations

for J and M, given the known incident fields, known as the electric

field integral equations (EFIE):

M(𝝆) + n̂1(𝝆) ×
[
− 𝑗𝜔𝜇1 (L1J) (𝝆) − (K1M) (𝝆)

]
= −n̂1(𝝆) × E𝑖 (𝝆)

M(𝝆) + n̂2(𝝆) ×
[
− 𝑗𝜔𝜇2 (L2J) (𝝆) − (K2M) (𝝆)

]
= 0,

(20)

and the magnetic field integral equations (MFIE):

J(𝝆) − n̂1(𝝆) ×
[
− 𝑗𝜔𝜖1 (L1M) (𝝆) + (K1J) (𝝆)

]
= n̂1(𝝆) × H𝑖 (𝝆)

J(𝝆) − n̂2(𝝆) ×
[
− 𝑗𝜔𝜖2 (L2M) (𝝆) + (K2J) (𝝆)

]
= 0

(21)

whereL1 (resp.L2) is theL operator defined using thewavenumber

for region 1 (resp. 2), and similarly for K1 and K2.

Equations (20) and (21) constitute four equations in two un-

knowns. Here, we combine them so as to ensure their solution
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(a) (b) (c)

Fig. 7. Besides different sizes of circular fibers and elliptical fibers, our wave-
based BCSDF is also able to model light scattering on more irregular cross
sections. The above are scanning electron microscope (SEM) images of three
irregular cross-sectional shapes that we exemplify in this work. a) is silk
cross section, often in polygonal-like shapes. b) and c) are two types of
polyester cross sections. Images (a), (b) and (c) are from [Babu 2018], [Lee
et al. 2003] and [Varshney et al. 2011] respectively.

is unique. The specific combination strategy adopted here is the PM-

CHWT approach [Poggio and Miller 1970], resulting in the smaller

system

n̂ × [− 𝑗𝜔(𝜇1L1 + 𝜇2L2) J − (K1 + K2)M] = −n̂ × E𝑖
−n̂ × [− 𝑗𝜔(𝜖1L1 + 𝜖2L2)M + (K1 + K2) J] = n̂ × H𝑖 .

(22)

Discretization and linear system. We solve for the unknown cur-

rents by applying a Galerkin-type method to convert Equation (22)

into a linear system [Rylander et al. 2012]. First, we discretize the

fiber cross-section boundary Γ into 𝑁 line segments and represent

both the electric and magnetic surface currents using the same set

of 2𝑁 linear basis functions f :

J(𝝆) ≈
2𝑁∑
𝑖=1

(𝐼 𝐽 )𝑖 f𝑖 (𝝆), M(𝝆) ≈
2𝑁∑
𝑖=1

(𝐼𝑀 )𝑖 f𝑖 (𝝆) (23)

Each basis function is supported over two adjacent elements. The

first 𝑁 of the 2𝑁 basis functions represent 𝑧-directed currents, while

the other 𝑁 represent currents that flow on the fiber surface orthog-

onal to 𝑧.

Substituting the approximation (23) into the system (22) and test-

ing the resulting equations using the same basis f leads to a matrix

equation [
𝑍𝑀𝐸 𝑍 𝐽 𝐸

𝑍𝑀𝐻 𝑍 𝐽 𝐻

] [
𝐼𝑀
𝐼 𝐽

]
=

[
𝑉𝐸
𝑉𝐻

]
. (24)

where the submatrices are formed from inner products of testing

functions with the components of (22)

(𝑍𝑀𝐸 )𝑖𝑘 = −⟨f𝑖 , n̂ × ((K1 + K2) f𝑘 )⟩
(𝑍 𝐽 𝐸 )𝑖𝑘 = − 𝑗𝜔 ⟨f𝑖 , n̂ × ((𝜇1L1 + 𝜇2L2) f𝑘 )⟩

(𝑍𝑀𝐻 )𝑖𝑘 = 𝑗𝜔 ⟨f𝑖 , n̂ × ((𝜖1L1 + 𝜖2L2) f𝑘 )⟩
(𝑍 𝐽 𝐻 )𝑖𝑘 = −⟨f𝑖 , n̂ × ((K1 + K2) f𝑘 )⟩

(𝑉𝐸 )𝑖 = ⟨f𝑖 ,−n̂ × E𝑖 ⟩
(𝑉𝐻 )𝑖 = ⟨f𝑖 , n̂ × H𝑖 ⟩.

(25)

Here we define the inner product between a pair of vector functions

a and b as

⟨a, b⟩ =

∫
Γ

a(𝑠) · b(𝑠) 𝑑𝑠 (26)

This block matrix system has a total dimension 4𝑁 × 4𝑁 . 𝑍𝑀𝐸

represents the block where we expressM in EFIE (E) using the basis

functions f and apply the same set of basis functions as testing

functions. The other blocks are named analogously. 𝑉𝐸 and 𝑉𝐻 are

the test integrals on the incident electric field and magnetic field.

Finally, we solve for the coefficients 𝐼𝑀 and 𝐼 𝐽 , and we obtain from

(23) the surface currents J(𝝆) and M(𝝆), which are the equivalent

surface sources that define the solution to our scattering problem.

4.5 Computing far-field quantities
Having computed the surface currents, we can use the source field

relations (Equations (14) and (15)) to compute the scattered electric

field (E𝑠 ) and the scattered magnetic field (H𝑠 ) on an observing

circle with radius 𝑅. The quantity of interest is the azimuthal scat-

tering function, which describes the distribution of scattered light

within the specular cone. In electromagnetics, the Poynting vector

represents the energy transfer per unit area per unit time. We are

interested in the time-averaged Poynting vector, which can be cal-

culated as the real part of the cross product of the electric field and

the conjugate of the magnetic field:

⟨S⟩ =
1

2
Re(E × H∗

). (27)

The time-averaged Poynting vector is equivalent to vector irradiance

in radiometry and it provides a way to compute the azimuthal

distribution from the scattered field.

The quantities we can compute from the simulation include the

angular distribution of scattered intensity per unit length and the

absorbed power per unit length.

Scattered intensity. We conduct scattered far-field calculations

using asymptotic forms of the 2D Green’s function [Gibson 2014].

Then scattered intensity per unit length can be calculated as

𝐼𝑠 (𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) =
1

2
Re(E𝑠

far
× H∗

𝑠
far

) · 𝝆(𝜙𝑟 ), (28)

where 𝝆(𝜙𝑟 ) is the vector in the 𝑥 − 𝑦 plane, pointing away from

the origin and forming an angle of 𝜙𝑟 with the x-axis, with |𝝆(𝜙𝑟 )|
much greater than the fiber radius. The total scattered power per

unit length,𝑊𝑠 , can be obtained by integrating 𝐼𝑠 (𝜙𝑟 ).

Absorption. Absorbed power per unit length can be calculated

by integrating the normal component of the total field’s Poynting

vector over the boundary, as the net flow at the boundary is the

absorption:

𝑊𝑎 =

∫
Γ

1

2

Re(E1 × H∗
1
) · n̂1(𝑠) 𝑑𝑠

=

∫
Γ

1

2
Re(J∗

1
×M1) · n̂1(𝑠) 𝑑𝑠.

(29)

The second equation is derived by applying Equation (8).

5 WAVE OPTICS FIBER BCSDF
With the tools of the previous sections, we have the ability to solve

wave scattering problems for arbitrary cylinders under arbitrary in-

cident fields, either by using the Mie solution [Bohren and Huffman

2008] for circular cylinders or the BEM computation for arbitrary

cross sections. For a particular fiber, we run a set of simulations

using plane wave incident fields with different directions and wave-

lengths, each resulting in a scattered field. In this section we discuss

how to use these solutions in a path tracer by defining a BCSDF that,

when applied to an isolated curve primitive, matches the far-field

behavior of the wave simulation.
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As we discussed in Section 3.2, scattering of an incident field by

a fiber produces a far-field intensity distribution that is the sum of

three components: the incident beam; the scattered intensity; and

the extinction, a generally negative contribution from interference

between the scattered and incident fields. Energy balance requires

matching the integrals of these three distributions in the ray tracer,

which we do by matching the diameter of the fiber to the total

extinction, then normalizing the scattered distribution to the total

extinction to define the BCSDF.

5.1 Fiber cross section
From the scattered field for a particular incident direction and wave-

length, we compute the scattered power per unit length,𝑊𝑠 ≥ 0,

and the absorbed power per unit length,𝑊𝑎 ≤ 0 (Section 4.5); then

𝑊𝑥 = 𝑊𝑎 −𝑊𝑠 ≤ 0 is the extinction power per unit length. Dividing

by the projected irradiance of the incident beam gives the width

of fiber that geometrically receives power per unit length equal to

|𝑊𝑥 |:

𝐶𝑥 =

|𝑊𝑥 |
⟨S𝑖 ⟩ · 𝜔𝑖 cos𝜃𝑖

=

|𝑊𝑎 −𝑊𝑠 |
1

2
Re(E𝑖 × H∗

𝑖
) · 𝜔𝑖 cos𝜃𝑖

(30)

We call the width 𝐶𝑥 the extinction cross section.

In order to obtain consistent results between the renderer and

the wave simulation, the width of the fiber seen by rays in the scene

needs to match 𝐶𝑥 , even though it is different from the geometric

cross section 𝐶𝑔 . If this requirement is overlooked, either fibers

will scatter the wrong intensity, or the system will fail to conserve

energy, causing recursive path tracing results that are too bright in

the common case where 𝐶𝑥 > 𝐶𝑔 (Figure 8 (b)).

A similar issue arises in simulating non-circular fibers, which

even in the ray model present different widths to incident light from

different directions, and in both cases we call the required width

the effective cross section 𝐶𝑒 (𝜔𝑖 , 𝜆): in the ray case, 𝐶𝑒 = 𝐶𝑔 (𝜙𝑖 ), and

in the wave case, 𝐶𝑒 = 𝐶𝑥 (𝜃𝑖 , 𝜙𝑖 , 𝜆). Our renderer supports only a

single diameter at any point along a curve primitive, but a simple

extension to the ray intersection algorithm achieves an effective

width smaller than the intersection primitive by rejecting ray hits

when the ray is too far from the centerline (see Section 6).

5.2 BCSDF
For rays that hit the fiber, the BCSDF describes the distribution of

scattered light over the sphere of outgoing directions. This is simply

the far-field scattered intensity per unit length normalized to the

extinction power per unit length:

𝑁wave(𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) =

𝐼𝑠 (𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆)

|𝑊𝑥 (𝜃𝑖 , 𝜙𝑖 , 𝜆)| (31)

𝑁wave is the azimuthal function used to build the BCSDF as de-

scribed in (2):

𝑆 (𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) = 𝑀0(𝜃𝑖 , 𝜃𝑟 )𝑁wave(𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆),

where the longitudinal function 𝑀0 is evaluated following d’Eon

et al. [2011].

5.2.1 Evaluation. For each type of fiber, we precompute 𝑁wave as

a function of (𝜃𝑖 , 𝜙𝑖 , 𝜙𝑟 , 𝜆) and store it in tables; at rendering time,

we interpolate the tables to evaluate the BCSDF. Our renderer uses

(a) Ray, (b) Wave, (c) Wave,

conventional, naive, adjusted,

conserving energy excessive energy conserving energy

Fig. 8. A furnace test comparison on a head of white hair in a constant
environment. The conventional ray-based BCSDF (a) and our wave-based
BCSDF (c) conserve energy and will eventually disappear in the environment
as we keep increasing the number of bounces. The naive wave-based BCSDF
without the adjusted cross-section has excessive energy because the actual
incident energy in the wave sense is more than what the ray tracer collects.
We describe the effective cross section adjustment in subsection 5.1.

discretized wavelengths, so the azimuthal function is computed

using trilinear interpolation on the 𝜃𝑖 , 𝜙𝑖 and 𝜙𝑟 dimensions.

For 𝜙𝑖 and 𝜙𝑟 , we use the band-limitedness of the fields [Piestun

and Miller 1999] to compute a sufficient sampling rate based on the

fiber size. For the 𝜃𝑖 and 𝜆 dimensions, we increase the sampling

rate until there is no visible change in a rendering test. The required

sampling rates grow as the size of the fiber increases relative to

the wavelength because the distributions contain higher frequency

features. However, due to the averaging over wavelength and in-

cident angles that happen in rendering, in practice we find that

we can bound the sampling rates and still faithfully reproduce the

appearance. For a cylinder of arbitrary cross section, we store its

azimuthal function using no more than 50 wavelength samples, 100

𝜃𝑖 samples, 360 𝜙𝑖 samples and 360 𝜙𝑟 samples. For cross sections

that possess symmetry, we can decrease 𝜙𝑖 sample counts accord-

ingly. For large fibers, we first densely sample the four dimensions

to prevent aliasing, then average the BCSDFs down to the above

size to save memory. For circular, elliptical and arbitrary fibers, it

takes 7.2MB, 0.7GB and 2.6GB respectively to store an azimuthal

function (using 32-bit floats).

5.2.2 Sampling. In a Monte Carlo renderer we also need to be

able to efficiently sample the BCSDF. In our tabulated setting this

is easy to do by normalizing 𝑁wave separately per wavelength, 𝜃𝑖
and 𝜙𝑖 , resulting in almost perfect importance sampling for a fixed

wavelength.

Because the BCSDF can vary dramatically with wavelength, and

because the fiberwidth depends onwavelength, we opt for rendering

with a single wavelength per path. This eliminates difficulties with

rays that hit at some wavelengths and miss at others, and also avoids

the need to find a compromise PDF that achieves good importance

sampling across all wavelengths simultaneously.

Figure 8 (c) demonstrates that these computations successfully

achieve energy balance in the path tracer. We further validate the

match between the wave simulation and its representation in the

path tracer in Section 7.2.
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(a) (b)

𝜃𝑖 = 0, TM polarization

𝜙𝑟

𝜃𝑖 = 𝜋/3, TE polarization

𝜙𝑟

Fig. 9. We validate our Mie and BEM solver against MatScat[Schäfer 2020;
Schäfer et al. 2012; Schäfer 2011] on circular cylinder scattering. This com-
parison shows the scattering intensity distribution for a 1𝜇𝑚 radius fiber for
wavelength 400nm. a) shows TM polarization for normal incidence (𝜃𝑖 = 0);
b) shows TE polarization for 𝜃𝑖 = 𝜋/3. Our Mie implementation matches
MatScat perfectly and the error of the BEM solver is within 1%.

6 IMPLEMENTATION
Wave simulation and acceleration. We implemented our wave op-

tics fiber scattering simulation in C++. For scattering from infinitely

long circular cylinders, the analytic Mie solution [Bohren and Huff-

man 2008] to Maxwell’s equations is available. This method is much

less expensive than the Boundary Element Method as it does not in-

volve assembling and solving a large matrix. However, it is limited to

circular cross sections. For cylinders with arbitrary cross-sectional

shapes, we implemented our own BEM solver. For linear algebra

computation, we used the Eigen library [Guennebaud et al. 2010]

and for special function calculations we used the Complex_Bessel

C++ interface [Dumont and Gagnon 2013] that calls the FORTRAN

implementation of Amos [1986]. Several optimizations are impor-

tant in this implementation. First, the Hankel function evaluations

needed to evaluate the Green’s function during matrix assembly

are a bottleneck, so we precompute these functions with complex

arguments and store them as tables. Also, once the cross section and

material properties are fixed, we need to run simulations for many

wavelengths, incident directions, and for two polarizations. This

results in solving the linear system (24) repeatedly. However, as 𝑍

only depends on wavelength and 𝜃𝑖 , but not 𝜙𝑖 and polarization,

we only need to assemble 𝑍 once and conduct one LU factoriza-

tion for all 𝜙𝑖 and different polarizations. Besides accelerating the

special function evaluation and the linear system solve, we also

parallelize the simulations for different 𝜃𝑖 . These three levels of

acceleration speed up the simulation by 3 orders of magnitude. Our

code is available on the project page
3
.

Ray traced BCSDF. To compare our wave-based BCSDF to a ray-

based BCSDF for fibers with arbitrary cross sections, we also devel-

oped a 2D ray tracer that can compuate the azimuthal scattering

distribution of any cross-section shape. This 2D ray tracer constructs

ellipses parametrically and constructs more irregular shapes using

line segments with linearly interpolated normals. It computes the

scattering distribution by binning the scattered rays.

3
http://mandyxmq.github.io/research/wavefiber.html

Predicted net effect due to the presence of the fiber
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Fig. 10. We computed the net effect due to the presence of the fiber both in
wave simulation and in the renderer. This net effect is the difference between
the total intensity and the incident intensity. It is computed as a function
of 𝜙𝑟 for a particular fiber at a single wavelength and incident direction.
This plot shows that the integration of the wave azimuthal function into
the renderer reproduces the net effect with good accuracy.

Integrating tabluated BCSDF into a renderer. We integrated our

precomputed wave-based and ray-based BCSDFs into PBRT [Pharr

and Humphreys 2010] by introducing two new materials. In Section

5.1, we define the effective cross section 𝐶𝑒 , which equals to the

equivalent fiber width that light interacts with. In the ray case, 𝐶𝑒
depends on 𝜙𝑖 for non-circular fibers; in the wave case, 𝐶𝑒 depends

on the incident direction and the wavelength. It is crucial to account

for𝐶𝑒 to achieve energy balance but it is not practical to instantiate

a new primitive when the incident direction or the wavelength

changes. Therefore, we use a bounding circular cylinder with its

diameter equal to the maximum
4
of 𝐶𝑒 over incident directions and

wavelengths as the intersection primitive.We apply an offset-limited

intersection scheme to achieve an effective width. This scheme

determines whether a ray hits the fiber by comparing the offset of

the ray from the fiber centerline with 𝐶𝑒 .

7 VALIDATION
We validated our implementation using three tests: comparing our

Mie and BEM solutions to those from an existing Mie solver for the

special case of a circular fiber; comparing the wave simulation and

our path tracer implementation under matching illumination; and

comparing our simulation result against a simple physical measure-

ment.

7.1 Wave simulation
We compared our Mie implementation and BEM solver for circular

fibers with an open-source Mie implementation, MatScat [Schäfer

2020; Schäfer et al. 2012; Schäfer 2011]. We tested various fiber sizes,

incident 𝜃𝑖 angles, complex refractive indices, wavelengths and

two polarizations, and found excellent agreement between all three

solvers. Figure 9 shows azimuthal scattered intensity comparisons

for two configurations. Our Mie implementation matches MatScat

4
In the wave case, we clamp the maximum of𝐶𝑒 to at most 6 times the fiber’s original

geometric cross section to prevent any arbitrarily large values.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Fig. 11. We separated one fiber from the yarn sample shown in (a) and
under 200x magnification in (b) and illuminated it with a red laser at normal
incidence. We then observed its scattered light pattern on a diffuse paper
target, with a hole at the beam’s location. (c) is a photograph capturing
the fiber scattering pattern when the target is 65cm away from the fiber.
(Micrograph (b) courtesy of Manwen Li.)

perfectly and the error of our BEM solver is less than 1% with 300

line segments.

7.2 Integration to the rendering system
We validated the integration of our wave optics azimuthal function

into the renderer by comparing the net effect of the fiber on the

far-field radiance distribution. For a particular fiber, wavelength

and incident direction, the net effect can be computed as the total

intensity minus the incident intensity as a function of 𝜙𝑟 .

In the wave case, we used a Gaussian beam to compute the net

effect. Unlike a plane wave, a Gaussian beam is a non-singular

incident distribution, so we can take a meaningful far-field limit

and compute the total field intensity minus incident field intensity.

It provides a way to evaluate the accuracy of integrating the wave

BCSDF into the renderer. In addition, a Gaussian beam does not

introduce actual simulation cost to our computation. One can post-

process plane wave simulation results to produce beam solutions

for any beam widths and offset values. In practice, we choose a

Gaussian beam that is ten times wide as the fiber radius so that the

incident field is mostly constant across the fiber.

In the renderer, we traced rays with density and angular distri-

bution matching this Gaussian beam. For rays that intersect the

effective cross section, we sampled scattered directions using the

precomputed azimuthal function, otherwise the rays kept their ini-

tial direction. The resulting ray distribution corresponds to the total

intensity distribution. The incident intensity is given by the initial

ray directions. Figure 10 demonstrates that the net effect produced

in the renderer is very close to the results of the wave simulation.

The small differences near the forward direction are due to the fact

that the geometric shadow and wave shadow are not quite the same

shape.

Predicted intensity

horizontal displacement (m)

Fig. 12. This figure compares the ray and the wave predictions of a sin-
gle fiber under laser beam scattering. We skip plotting the values near the
forward direction to mimic the hole on the collecting paper in the mea-
surement that lets the incident beam go through. The wave result predicts
an oscillating pattern that is more consistent with what is observed in the
experiment (Figure 11 (c)) than the monotonically decaying component
predicted by the ray method. We use a horizontal error bar to mark the
range of the measured first minima. The wave predicted and measured first
minima do not exactly align because we used Babinet’s principle for opaque
objects to estimate the refractive fiber’s size.

7.3 Measurements
To demonstrate the presence of wave optics effects in real fiber

scattering, we illuminated a single fiber with a laser beam and pho-

tographed the resulting scattering pattern. The scattering pattern

has bright and dark fringes similar to those predicted by our wave-

based model and which are absent from prior ray-based models.

We manually extracted individual polyester fibers from the yarn

sample shown in Figure 11 (a) and (b). Next we illuminated a single

fiber at normal incidence with a red laser and so that its scattered

light falls onto a distant piece of paper. A small hole in the paper

allows the remaining unscattered beam to pass through. We then es-

timated the location of the first minimum, or dark fringe, in the main

scattering pattern as shown in Figure 11 (c). These scattering images

also contain several fainter patterns with different alignments, and

we speculate that these may be due to fiber imperfections, such as

residual kinks or bends from having previously been twisted into a

yarn. Nevertheless, the presence of fringes is a strong indicator of

wave-optics effects.

We repeated this experiment for three fibers and three orienta-

tions for each fiber and found similar first minima in each, ranging

from 2.8 to 3.4cm from the beam center. Babinet’s principle [Born

and Wolf 1999] states that the diffraction from an opaque object is

identical to that of a hole of the same shape (except for the forward

beam intensity). Using this principle, we can roughly estimate the

size of any occluder from the location of the first minimum as:

𝐷 =

𝜆𝐿

𝑦
. (32)

where 𝐷 is the occluder width (or fiber diameter), 𝜆 = 650nm is

the wavelength, 𝐿 = 65cm is the distance to the paper, and 𝑦 is the

location of the first minimum. This gives an average estimated fiber
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diameter of 13.8𝜇𝑚, which is close to our visual estimate of 13.1𝜇𝑚

from the microscopy image in Figure 11 (b).

We also estimated the laser pointer’s beam divergence and used

it to compute wave and ray simulations of the fiber scattering to

compare with the observed pattern. To make a fair comparison,

the ray simulation used rays with density and angular distribution

matching the estimated beam. Figure 12 compares these wave and

ray predictions. The wave result shows an oscillating pattern that is

similar to the observed diffraction fringes. The first fringe minimum

prediction is close to our observed values of 2.8 to 3.4cm. The ray

method, however, predicts a simple monotonic decrease away from

the forward direction which does not match the observed scatter-

ing pattern. The small mismatch in the wave predicted minimum

location is because we used Babinet’s principle for opaque objects

to roughly estimate the refractive fiber’s size.

8 RESULTS
In this section, we demonstrate that our wave optics based fiber

scatteringmodel is able to handle fibers with different sizes, arbitrary

cross section shapes and material properties by rendering different

types of fibers in various environments. In addition, we compare

our wave optics based fiber scattering model with the ray optics

fiber scattering model and examine the similarities and differences

of the two methods. We conduct the comparisons both by directly

showing their azimuthal distributions (Figure 6) and by rendering

fibers under different conditions. Also, we showcase an animal fur

scene with textured fiber colors (Figure 16).

8.1 Strong color effects for thin fibers
A wave-based scattering function by nature is always wavelength

dependent, even in the lossless fiber case. Our wave-based fiber

scattering model is able to handle diffraction and interference effects

that conventional ray models cannot. In Figure 4 and Figure 13

we show rendering comparisons of one layer of aligned fibers lit

by a point source. We render both with the light source close to

the camera and behind the fibers to observe backscattering and

forward scattering effects respectively. In Figure 4, we show that the

rendering from ray optics matches with that fromwave optics pretty

well at large geometric scale except that the wave optics results have

a stronger forward scattering peak. There are substantial differences

for small scale fibers. In particular, wave optics predicts rainbow

colors that cannot be reproduced in the ray results. These colors

can be observed in the 𝜙𝑖 vs. 𝜙𝑟 plots as well.

We render a spider web iridescence example in Figure 1. In this

figure, we compare renderings produced using our wave-based

method and a ray-based model (Figure 1(b) and (c)) to a photograph

(Figure 1(a)). We are able to produce strong color effects due to

diffraction and interference while the ray model cannot.

8.2 Forward scattering
Compared to the wave BCSDF predictions, the previous ray model

has less energy in the forward scattering direction and this results

in appearance differences, especially in the backlit setting. In Figure

14 we show one frame of the orbit renderings with a head of curly

black hair under an area light and an environment light. The ray

orientation 1 orientation 2 random orientation

R
a
y

W
a
v
e

R
a
y

W
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Fig. 13. We compare renders of 1 layer aligned fibers with an elliptical cross-
section under a point light. In the top two rows, the light is close to the
camera, showing backscattering effects. in the bottom two rows, the light is
behind the layer of fibers, showing forward scattering effects. Row 1 and 3
are rendered using the ray-based BCSDF while row 2 and 4 are rendered
using our wave-based BCSDF. In columns 1 and 2, we set the fibers to have
two different constant orientation angles, while in the last column fibers
are oriented randomly. The elliptical fibers’ semi-major axis equals 1.6 𝜇𝑚
and semi-minor axis equals to 1𝜇𝑚. We observe that the wave renders have
strong color effects, which are not in the ray predictions. In additions, the
distributions are also different and result in highlight differences between
the ray results and the wave results.

result is lacking energy near the forward direction and results in a

dimmer appearance on the edge of the hair model. Forward scatter-

ing appearance differences are also shown in Figure 4 and Figure 13.

Strong forward scattering in cylindrical particles was also observed

in paper fibers [Linder 2014].

8.3 Other appearance differences
We compare wave optics results and ray optics results in more

complex settings. As more randomness is added (by averaging over

light sources and multiple bounces), the color effects caused by

diffraction and interference start to average out. However, we still

observe appearance differences. In Figure 15 and Figure 16, the

wave results produce smoother and softer highlights. In the wave

render of Figure 16, individual fibers become less distinct and there

is more overall translucency in the fur. In Figure 17, the wave and ray

methods produce different shapes of highlight. We refer the reader

to the supplemental webpage to better observe the differences.
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RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave

Fig. 14. This figure shows one frame of the orbit renderings where we have a head of elliptical curly black hair under an environment light and a rotating area
light. The aspect ratio of these elliptical fibers is 1.9 and for the wave model, we set the ellipse semi-major and semi-minor axes to be 19𝜇𝑚 and 10𝜇𝑚. The
wave result produces softer and brighter highlights on the edges of the model, which one can observe from backlit scenarios. The previous ray model misses
energy near the forward scattering direction and this results in the backlit appearance not bright enough on the edge.

WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave

RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay

WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave

RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay

Fig. 15. This figure shows renderings of a head of elliptical red hair lit by an environment light. The aspect ratio of these elliptical fibers is 1.6 and for the wave
model, we set the ellipse semi-major and semi-minor axes to be 16𝜇𝑚 and 10𝜇𝑚. We show the full-scale render using our wave BCSDF on the top left. On
the bottom left, we zoom in on hair ends and show the comparison between the ray and the wave renders. On the right, we zoom in near the root of hair.
Comparing to the ray render, the wave render has different highlight patterns and a softer appearance.

8.4 Performance
We report the wave simulation time on an 8-core Intel i9-9900K

machine (Table 1). This table contains the simulation information for

generating the azimuthal scattering distribution of 9 different kinds

of cross sections. For circular fibers, we compute their azimuthal

functions using the Mie solution and for non-circular fibers, their

azimuthal functions are calculated using the BEM based simulator.

The number of 𝜙𝑟 samples is 360 for all examples except for the

circular cross section with 100𝜇𝑚 radius, where we use 3600 samples.

We use 100 𝜃𝑖 samples for all examples.

We report rendering time on the same machine (Table 2). We use

spectral rendering with 50 wavelengths for both the ray-based and

the wave-based BCSDF. We use wavelength-independent sampling

for both the ray-based and the wave-based model.
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Table 1. Simulation time.

Circle 1 Circle 2 Circle 3 Ellipse 1 Ellipse 2 Ellipse 3 Polyester 1 Polyester 2 Silk

Radius
∗
(𝜇𝑚) 1 10 100 1.6 16 19 5 5 5.6

Segment# - - - 300 2000 2375 675 804 629

Matrix size - - - 1200
2

8000
2

9500
2

2700
2

3216
2

2516
2

𝜙𝑖 samples 1 1 1 90 90 90 360 360 360

Spectral samples 50 100 500 50 100 100 50 50 50

Time 5s 19s 1.1h 1.3h 77.3h 91.8h 12.1h 15.1h 13.0h

max(𝐶𝑒/𝐶𝑔 )
∗

6.0 3.0 2.2 6.0 2.5 2.5 2.7 2.8 2.5

* Radius is defined as the max distance between a point on the cross section contour to the center; the center is computed by averaging all the vertex positions.

* The last row reports the maximal ratio of the effective to the geometric cross section over incident direction and wavelength. The values of Circle 1 and Ellipse 1 were clamped.

RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay

WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave
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Fig. 16. In this figure, we showcase an animal fur rendering. The hamster
fur is textured using six kinds of elliptical fibers with different colors The
semi-major and semi-minor axes of the fiber are 16𝜇𝑚 and 10𝜇𝑚. On the
left, we split the full-scale render into two halves, where the bottom left half
is rendered using the ray method and the top right half is rendered using
our wave BCSDF. On the right, we display zoom-in renders that interleave
ray (odd squares) and wave (even squares) results in a checkerboard pattern.
The wave result has softer highlights and has more overall translucency.

9 DISCUSSION AND CONCLUSION
This paper introduces the first wave optics based fiber scattering

model. Under the assumption that the fiber does not have variations

along the fiber axis locally, we use this symmetry to decompose

the 3D fiber scattering problem into an easier 2.5D problem. We

build wave-based azimuthal scattering functions by numerically

solving Maxwell’s equations with a boundary element method and

compute the azimuthal distribution from the simulated scattered

WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave
RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay

WaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWaveWave
RayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRayRay

Fig. 17. This figure shows a sofa scene, where the top surface of the sofa
and the side surfaces of the three cylinders are made of silk. The SEM of
this silk fiber is shown in figure 7 (a) and the 𝜙𝑖 vs. 𝜙𝑟 plot of the azimuthal
scattering function can be found in figure 6. We compared the ray result
and the wave result by splitting the images (regular and zoom-in) into two
halves: the top halves are rendered using our wave BCSDF while the bottom
halves are rendered using the ray method. We observe stronger highlights
and some color shifts in the wave render.

fields. We integrate our new fiber scattering model into a modern

renderer by precomputing the azimuthal function used along with

longitudinal functions from existingmodels.We show that our wave-

based fiber scattering model can render diffraction and interference

effects that cannot be handled by conventional ray optics models

and demonstrate highlight prediction differences between the ray

optics and thewave optics models. This work is the first step towards

more general wave optics fiber scatteringmodels and there are many

exciting future directions we would like to pursue to improve the

current solution.

Generalization to full 3D. Our current work makes use of 2.5D

wave simulation, which requires the assumption that the BCSDF can

be decomposed into longitudinal and azimuthal scattering functions

and that we keep the ray-based longitudinal function. In the future
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Table 2. Rendering time.

Fig. Method Resolution Spp Time

1 (b) Wave 800×800 512 38min

1 (c) Ray 800×800 512 32min

4 Ray 400×400 64 18s

4 Wave 400×400 64 28s*

8 (a) Ray 400×400 64 70min

8 (b) Wave 400×400 64 82min

8 (c) Wave 400×400 64 80min

13 Ray 400×400 64 22s*

13 Wave 400×400 64 28s*

14 Ray 1600×900 192 22.7h

14 Wave 1600×900 192 22.9h

15 Ray 800×800 128 8.0h

15 Wave 800×800 128 8.0h

16 Ray 1200×1440 128 32.0h

16 Wave 1200×1440 128 33.2h

17 Ray 1400×1400 128 16.9

17 Wave 1400×1400 128 17.0h

* Rendering time is averaged across the wave/ray renders in that figure.

work, we would like to generalize the current work to a full 3D wave

model, which can potentially reveal other effects caused by longitu-

dinal irregularity. A more general solution would involve upgrading

our current simulator to 3D and solving the 3D boundary integral

equation problem. As the dimension increases, we might need other

acceleration methods such as the multilevel fast multipole algo-

rithm (MLFMA) [Song et al. 1997], and compression schemes to

keep the memory usage and running time reasonable. This general-

ization would remove the no cuticle scale assumption and also the

longitudinal and azimuthal separation assumption.

Individual fiber assumption. Our method assumes that the scat-

tering BCSDF for each fiber can be estimated independently of its

surroundings. However, this neglects the interference effects that

can occur between fibers when they are closely spaced. To illustrate

this effect, we simulated the scattering from pairs of randomly-

positioned circular lossless parallel cylinders with 1𝜇𝑚 radii using

𝜇-diff [Thierry et al. 2015]. Figure 18 shows the results for inter-

cylinder distances of 4𝜇𝑚, 16𝜇𝑚 and 2000𝜇𝑚 averaged over 10000

random configurations and compares them to our approximation

without inter-cylinder interference. We observe that the dual cylin-

der results contain additional high frequency interference patterns,

but are otherwise broadly similar to our no-interference approx-

imation and converge to it as the distance between the cylinders

increases. Note that we omit plotting the exact forward direction.

Previous studies [Mishchenko et al. 2007, 2002] have shown that the

exact forward-scattering direction is unique in that the phase shift is

the same irrespective of the specific particle positions and construc-

tive interference causes a strong forward-scattering enhancement.

Precomputation cost and storage. We reported the simulation time

in Section 8.4 and storage cost in Section 6. Besides the acceleration

methods we described in 6, we can further accelerate the simulation

by adapting the simulator to be GPU based. We would also like

to lower the storage cost of the wave-based azimuthal function
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Dual cylinder interference

Fig. 18. This figure plots the wave-optics scattering from pairs of cylinders
at various separation distances (2, 8, 1000 diameters) and compares them
to our approximation which neglects inter-fiber interference effects. The
closely spaced fibers exhibit high-frequency angular oscillations that our
method does not capture, but the scattering pattern is otherwise similar
and converges to our approximation as the cylinder distance increases.

tables. We can compress the tables by fitting analytic functions to

the distribution or applying learning techniques.
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