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A Wave Optics Based Fiber Scattering Model

Supplemental document
Mandy Xia, Bruce Walter, Eric Michielssen, David Bindel, Steve Marschner

Our paper introduces the first wave optics based fiber scattering model, presenting an az-
imuthal fiber scattering function that comes from a full-wave simulation. Wave optics pro-
vides an alternative model that characterizes light as an electromagnetic wave that obeys
Maxwell’s equations, which is more accurate at all scales. Electromagnetics (EM) and Com-
putational Electromagnetics (CEM) are the foundations of wave optics research. This sup-
plemental document is an expanded version of the EM section (Section 4) of the main paper.
However it is not possible to cover all the details and we refer the readers to classical text-
books [8, 9] and lecture notes [4] on EM, textbooks on CEM [15, 6], Optics [3] and small
particle scattering [2] for more details. This supplemental document heavily relies on the
above references.

This supplemental material includes a brief summary of the basic electromagnetic con-
cepts (Section 2) we use in the paper and more detailed derivations of the solutions to the
dielectric cylinder scattering problems by solving Maxwell’s equations (Section 3). We de-
scribe both the numerical method using the Boundary Element Method (BEM) and the
analytic solution using Lorenz-Mie theory. Finally, we explain the idea that using linearity,
scattering from other kinds of illumination can be handled by first expressing them as sums
of plane waves (Section 4). We use a Gaussian beam incidence field as an example as it is
the incident field we use to conduct one of the validation tests.

The update-to-date version of this document can be downloaded from the project page.


http://mandyxmq.github.io/research/wavefiber.html
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1 Table of symbols

A wavelength

0,0;,0, polar angle, incident polar angle, outgoing polar angle
b, Giy Or azimuthal angle, incident azimuthal angle, outgoing azimuthal angle
Wi, Wy incoming, outgoing direction

S(0;, 0., di, Doy A) BCSDF in spherical coordinates

Mqy(6;,0,) longitudinal scattering function of mode 0

Ny (0;, bis b0y A) azimuthal scattering function of mode p

Nyays Nwave(0iy i, 0o, A) | ray-based, wave-based azimuthal scattering function
X,y,Z unit vectors in the positive xz, y, z direction.

r 3D position

P, P 2D position, norm of p

r boundary of cylinder cross section

€; unit vector in the incident wave propagation direction
EH electric field, magnetic field

J, M electric current, magnetic current

D electric displacement

B magnetic flux density

S, (S) Poynting vector, time-averaged Poynting vector

Qes Qm electric charge density, magnetic charge density

J complex unit

w angular frequency

€, b permittivity, permeability

k 3D wave vector in w; direction

k, k, transverse component of k and its magnitude

k. z componnet of k

G Green’s function of the Helmholtz equation.

L, i, P linear operators

n normal vector

f linear basis function for currents

Z the matrix in the boundary element method formulation
I, 1y coefficients of magnetic and electric currents’ basis functions
I(0;, b, by N) scattering intensity

W, Wa, W, scattering, absorption, extinction power per unit length
Ce,Cy, Cy effective, extinction, geometric cross section

P scalar wave

U Gaussian beam in scalar form

w Gaussian beam waist

Ye Gaussian beam offset

N mode number in the expansion

Table 1: We summarize the symbols used in the main paper and this document.




2 Basic Electromagnetics concepts

We will start with a brief summary of the basic concepts and equations in classical electro-
magnetic theory. They are the fundamentals of the methods described in later sections. A
more detailed treatment on these materials can be found in [8, 9, 4].

2.1 Maxwell’s equations

The mathematical description of all wave optics phenomena is based on Maxwell’s equations.
Fields for which the time variation is sinusoidal are called time-harmonic fields and the
mathematical analysis can be simplified by using complex quantities. A complex electric
field E or also called a phasor is defined as related to an instantaneous electric field E;,q;

Einst = Re(Ee?"), (1)

where w is angular frequency. Similarly a phasor of the magnetic field H is related to an
instantaneous magnetic field Hj,g via

H;,. = Re(He!"). (2)

In what follows, we assume time-harmonic fields and time dependence e/“! is suppressed
unless specified. The time-harmonic Maxwell’s equations we use are [§]

VXE=-M — jwuuH
VxH=J+ jweE
VD =¢q
V-B=qpn.

w
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In the above equations J is the electric current density. It represents moving electric charges
(e.g. electrons). In our dielectric cylinder scattering problem, they are so-called “equivalent
electric current densities”, artificially introduced to create fields that satisfy appropriate
boundary conditions when constructing integral equations for the fields scattered from fibers.
D is the electric displacement and ¢, is the electric charge density. B is the magnetic flux
density. Magnetic current density M represents moving magnetic charges and ¢, is the
magnetic charge density. Such charges have never been observed in nature. M and ¢,, are
entirely fictitious and introduced as mathematical auxiliary quantities solely to model fields
appropriate in the construction of integral equations [8].

The cylinder scattering problem we are interested in contains linear, isotropic and nondis-
persive materials for which the following constitutive relations hold.

B=,H, D=¢E, (7)

where p is the magnetic permeability and € is the electric permittivity.



2.2 Plane wave

A simple solution to Maxwell’s equations represents a perfectly monochromatic parallel beam
of light. It is called a plane wave and it propagates in a homogeneous medium without
sources. The incident electric and magnetic fields (i.e. fields in the absence of the fiber) are

E;(r) = E;(0) &/*"
HZ<I') = HZ(O) Bjk'r

Whto

(8)
H;(0) = -

where E;(0) and H;(0) define the wave’s intensity and polarization, and the wavevector k =

—ke;, where e; is a real unit vector in the direction of wave propagation. The wavenumber
is k = 27“ for light of wavelength A\ and angular frequency w = 27 /(A\\/€ofig)-

2.3 Poynting vector

In electromagnetics, the Poynting vector represents energy flow. It can be derived from
the conservation of energy, often called Poynting’s theorem [9]. The instantaneous Poynting
vector can be calculated as

S = Einst X Hinsta (9)

We are interested in the time-averaged Poynting vector and it can be derived as:
T
S) == S(t) dt
S =7 [ so
T
= _/ Elnst( ) X Hlnst( ) dt
T 10
/ e(Ee’") x Re(He*") dt (10)
0

T
1 (P .
/ 5 (B! + Ere ) x J(HeM' + H'e ™)) dt
0

“"“ ’ﬂl = *ﬂl

Re(E x HY),

which is Equation (27) in the main paper. The time-averaged Poynting vector is equivalent to
vector irradiance in radiometry and it provides a way to compute the azimuthal distribution
from the scattered field. In a linearly polarized plane wave of a certain frequency, the
Poynting vector always points in the propagation direction while oscillating in magnitude.
The magnitude of the time-averaged Poynting vector for a plane wave is:

)1 = 5 /1BF- (1)



3 Dielectric cylinder scattering problems

In this work, we propose the first fiber scattering model that is built on wave optics simulation
in computer graphics. Conducting full wave scattering simulations is expensive, as it requires
resolving both electromagnetic fields and geometry at well below the scale of visible light
wavelengths. Furthermore, creating a complete scattering model requires many simulations
to account for all possible illumination directions. This work shows a way to make this
computation tractable through a series of simplifications:

e Like most fiber scattering models we assume a separable form for the model, as a
product of longitudinal and azimuthal scattering distributions, and in this paper we
derive new azimuthal distributions, while adopting a longitudinal model from prior
work [5].

e For modeling azimuthal scattering we assume that fibers are extrusions with perfect
translational symmetry. We exploit this symmetry in a “2.5D” wave scattering simula-
tion that computes 3D electromagnetic fields using values only in a 2D cross-sectional
slice.

e To avoid the need to discretize the volume of the fiber and the space surrounding it,
we employ a boundary integral formulation that reduces the set of unknowns to a 1D
discretization of the fiber’s planar cross section curve.

With careful attention to efficiency in implementation, this makes it possible to compute
azimuthal scattering for fibers of arbitrary cross sections and arbitrary material properties,
for all incident and scattered directions and all relevant wavelengths, in a precomputation,
resulting in tabulated azimuthal scattering functions to be used in rendering.

In this section, we describe how to solve the infinitely long dielectric cylinder scattering
problem using the Boundary Element Method (BEM) for arbitrary cross-section shaped
cylinders and using the Lorenz-Mie theory for circular cross-section shaped cylinders.
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(a) Spherical coordinates (b) TM polarization (c) TE polarization

Figure 1: (a) An illustration of the commonly adopted longitudinal-azimuthal parameteri-
zation for fiber scattering models. Each of the directions w; and w, in 3D is parameterized
using the polar angle 6, defined as the angle between w and the zy-plane (the plane perpen-
dicular to the cylinder axis), and the azimuthal angle ¢, defined in zy-plane. (b) and (c)
illustrate the transverse-magnetic (TM) and transverse-electric (TE) polarization types that
can be linearly combined to produce arbitrary polarization configuration.



3.1 Problem setup

The boundary of the fiber is the extrusion of a curve I' in the x-y plane along the z axis.
This surface divides space into exterior and interior regions, denoted 1 and 2 respectively,
with different material properties (€1, 1) and (g, o). For a dielectric fiber with refractive
index n + jx surrounded by free space, €; = €, €2 = (n + jk)%€g, and py = s = po, where
€p and pg are the permittivity and permeability of free space.

Figure 2: Introducing a fiber divides the
space the two regions. We illustrate a fiber
E H, cross section and denote the exterior and in-
terior regions as region 1 and 2 respectively.
The dielectric cylinder scattering problem
has fields both interior and exterior to the
fiber with a change in material properties (€)

. at the surface.
— Bj[

Fields The fiber is illuminated by a plane wave propagating in direction —w;. As illustrated
in Figure 1 (b) and (c), there are two types of polarization. One is called transverse-magnetic
(TM), where the magnetic field H; is perpendicular to the plane defined by the cylinder
axis and wave propagation direction (Figure 1 (b)); the other polarization type is called
transverse-electric (TE), where the electric field E; is perpendicular the plane defined by the
cylinder axis and wave propagation direction (Figure 1 (c)). Note that any other linearly
polarized incidence wave can be expressed as a linear combination of TM and TE incidence.
For simplicity of integrating the new scattering model into current rendering systems we
assume light incident on a fiber is always unpolarized. Therefore, we compute the scattering
distributions for TM and TE polarization and take the mean of the two, and this produces
the scattering distribution for an unpolarized incident wave. Note that oblique incidence
cylinder scattering with one type of polarization will result in scattered fields with a mixed
of two types of polarization.

Using linearity, scattering from other kinds of illumination can be handled by first ex-
pressing them as sums of plane waves. We take the Gaussian beam incidence field as an
example to explain this in Section 4.

The presence of the fiber alters the fields and we call the resulting fields the total fields
E;, H;. In the rest of this document, we will express the total fields as sums of simpler fields
E,, H;, which are zero in the interior of the fiber, and Ey, Hy, which are zero in the exterior.
We further subdivide the exterior total fields into the incident fields and the scattered fields
E,, H, such that

Et = El + EQ, Ht = H1 —+ H2 (12)
The scattered fields propagate outward from the fiber and will be the key to computing the
BCSDF for rendering. The scattered wave in region 1 travels with the same speed as the

incident wave (free space light speed ¢) and the transmitted wave in region 2 travels with
speed ¢/7.



Boundary conditions One can derive the boundary conditions at the interface between
the interior and the exterior of the fiber from the integral equivalents of the Maxwell equations
9]. Let Ei,H; and Ey, Hy denote the total fields exterior and interior to the cylinder. On
the surface the tangential electric and magnetic fields are continuous

ﬁXElzﬁXEQ; ﬁXleleHQ. (14)

3.2 Boundary integrals and Boundary Element Method (BEM)

We use the Boundary Element Method (BEM) to numerically solve the dielectric cylinder
scattering problem. Compared to the other numerical methods, BEM has lower complexity
as it only needs to discretize the boundary of the object. The method is outlined as the
following;:

e We first make use of the surface equivalence principle [10, 13] to turn the scattering
problem that contains different materials into equivalent exterior and interior prob-
lems, where there is only one kind of material in each problem and the fields can be
characterized by Helmholtz equations.

e We then derive general 3D source-field relations that write the scattered fields as the
integration of the sources with the appropriate Green’s function.

e Next, we make use of the translational symmetry of the dielectric cylinder problem
that lets us model fibers locally as homogeneous infinitely long cylinders and turn 3D
source-field relations into 2.5D ones.

e We then form the boundary integral equations by applying the boundary conditions
and the relation between incident, scattered and total fields.

e Finally, we solve the boundary integral equations using BEM, which discretizes the
boundary of the cylinder cross section and turns the boundary integral equations into
a linear system to solve.

3.2.1 Splitting the problem via surface equivalence

Different source distributions outside a given region can produce the same field inside the
region and we say the two sources that produce the same field are equivalent. The surface
equivalence principle [10, 13] states that fields E, H that exist in a source-free region can
be generated by surface currents J, M residing on the region’s boundary. This equivalence
lets us transform our scattering problem into a pair of problems concerning unbounded
homogeneous media, which are amenable to solution using Green’s functions (Figure 1).
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Figure 3: Separation of interior and exterior fields via surface equivalence. The original
problem (left) has fields both interior and exterior to the fiber with a change in material
properties at the surface. It is transformed into a pair of problems (right), each in a ho-
mogeneous medium, with surface currents generating the field on one side and zero on the
other side.

The two equivalent problems are called the equivalent exterior problem (Figure 3 right)
and the equivalent interior problem (Figure 3 middle). In the exterior (interior) problem, the
fields is split into two components with original fields in region 1 (region 2) and null fields
in region 2 (region 1). The electromagnetic fields are discontinuous across the interfaces and
this is achieved by introducing the fictitious surface currents. In the exterior problem, the
fictitious electric and magnetic currents are J; and M; and the condition for the jump of
fields is

Ml = _ﬁl X El; J1 = ﬁl X Hl- (15)
In the interior problem, the fictitious currents are Jo and M, and the condition is
M2 = —ﬁg X EQ, J2 = ﬁQ X HQ, (16)

where n; = n is the surface normal vector pointing towards region 1. Then we can modify
the material parameters in regions where we have null fields because this will not affect
the fields. In particular, we set the material properties to match those in the other region,
transforming our problem into two (linked) homogeneous problems. The two equivalent
problems are related via the boundary conditions of the original problem (14) and it requires

J:le—Jg; M:Mlz—Mg. (17)

In regions of space where permittivity € and permeability p are constant, Maxwell’s
equations reduce to the Helmholtz equations [9].

1 1
V?E + k’E = jwupJ — —V(V-J)+ V x M = jwu(l+ VV-)J+V x M

jwe k2 (18)
1 1
V2H + k°H = jweM — jw—uV(v M) -V x J = jwe(l + ﬁvv-)M -V xJ

which we can use to compute the fields generated by a set of currents. In particular from J;
and M; we can compute the scattered fields E,, H; and from J, and M, we can compute the



fields Eo, Hy (using the material parameters for regions 1 and 2 respectively). Therefore we
use the currents to parameterize the fields in solving for them. In the following subsection, we
will explain how to convert the above PDEs into integral equations with a Green’s function.
The resulting equations are called source field relations. The fields will then be expressed
in terms of the sources in integral equations. The source field relations further enable the
boundary integral formulation of the scattering problem. The boundary integral formulation
is easier to solve comparing to the PDEs because sources are supported by a finite domain
while fields in PDEs exists in the entire space.

3.2.2 Source field relations in 3D

The 3D scalar Green’s function [12] represents the scalar field at r produced by a point
source at r’. It satisfies

VG (r,1') + kG (r,1') = =0 (r,x'). (19)

The Green’s function for this equation is not uniquely defined but we want the one corre-
sponds to a physically plausible solution (i.e. the one in which the scattered power flows
purely outward as defined by the Sommerfeld radiation condition [14]). The 3D Green’s
function is

Gy = £ 20
(r,r) = m (20)
We can write (18) compactly as
PE(r) =
(r) fl (r> (21)

PH(r) = fo(r)
with linear operator P(-) = (V? + k?)() acting on r and the forcing functions f;, fy are

fi(r) = jwu(l + %VV')J(I‘) + V x M(r),
K (22)
fa(r) = jwe(l+ =VV-)M(r) — V x J(r).

Using the Green’s function definition in (19)
/ PG, ) fo(x')dr = / (e, ) () = —fi(r) (23)
We have
P ( / Glr,r') fl(r’)dr’) —_A() = B =- / GV A()dr.  (24)
Similarly,
H(r) = — / Glr, 1) fo(x')dr'. (25)

We call the above two equations the source field relations in 3D as they relate the fields
with the currents in 3D via integral equations. Next we will show we can make use of the
symmetry of our problem to reduce it 2.5D.

10



3.2.3 Source field relations in 2.5D

We adopt the coordinate system shown in Figure 1 (a), and represent the 3D and 2D co-
ordinates using r = X + yy + 2z and p = xx + yy. The incident field can be expressed
as

E; = Ege/*Pel™* H,; = Hoe’*r Pe/*=* (26)

where k =k, + k.z and k, = |k,|. Since the z dependence of this source field is a complex
exponential, a translation in z corresponds to multiplying the field by a global scalar phase
factor. Since (18) is a linear PDE, scaling the source will scale all the quantities in the
problem by the same factor; hence all the fields and currents inherit the same z dependence
as EZ', I‘IZ

E(r) = E(p)e**, H(r) = H(p)e'*?,

" " (27)
J(r) = J(p)e’™*, M(r) = M(p)e’™".
Applying to the source field relations in 3D, we get
B(r) = Blp)e =~ [ Glr.x)a()ar /(/Grremmw)ﬁmmm
(28)
H(r) = Hip)e'™ = - [ Glrur) folx')d’ /(/Grrwww)ﬁ@wm
where
/Gmfw“wz=%m9mm—dmﬁ% (29)

and G(p, p’) = %HSQ)(k:Ap — p'|) is the 2D Green’s function that represents the field at p

produced by a line source at p'. H(§2) is the zeroth order Hankel function of the second kind.

It satisfies the following equation with the radiation condition:
VG (p,p') + k.G (p.p') = =0 (p,p') - (30)

After integrating out 2’ (28) can be written as

E(p)e’" = — / **G(p, p) f1(p)dp,

(31)
Hip)e* = [ &Glp. ) falo!)dp

Without loss of generality, we take z = 0. After some algebraic manipulations we arrive at
equations (13) and (14) in the main paper:
E(p) = —jwpld(p) — KM(p),

H(p) = —jweLM(p) + KI(p). (32)

11



where

1 ] / / /
X)) = |1+ 5V [ (p.0) X(6ap| ()
r z=0
(X)) =V % [ &G (p.p') X (oo (34)
r z=0
The V operator and X can be decomposed as
0
V=V,+ i& =V, + jk.2, (35)
X =X, + X.2. (36)

3.2.4 Boundary integral equations

Now we can form the boundary integral equations governing the scattering problem. Com-

bining the boundary current constraints (15), (16) and the relation between the incident

fields, scattered fields and the total fields (13), we get
M:—fl1X(Ei+Es)7 J:fllx(Hz+Hs)

. ) (37)
MZHQXE27 J:_HQXHQ

where the top two equations are for the exterior problem and the bottom two equations are
for the interior problem. The source field relations relates E;, H,, Eo, Hy with J, M:

E,(p) = —jwmLiI(p) — KiM(p),
H,(p) = —jwei L:M(p) + K1J (p),
Ex(p) = —jwusLaJ(p) — KoM(p),
H,(p) = —jwe2L2M(p) + K2J (p).
where £; (resp. Ls) is the £ operator defined using the wavenumber for region 1 (resp.

2), and similarly for K; and Ky. Combining (37) and (38) we get the electric field integral
equations (EFIE):

(38)

M(p) + 11 (p) x [—jwp (L13) (p) — (KiM) (p)] = —1u(p) x Ei(p) (39)
M(p) +1fiz(p) x [—jwpz (L2T) (p) — (K2M) (p)] =0,
and the magnetic field integral equations (MFIE):
J(p) — 1u(p) x [—jwer (LiM) (p) + (K1J) (p)] = 1u(p) x Hi(p) (40)

J(p) — 0z(p) x [—jwez (L2M) (p) + (K2T) (p)] =0,
Equations (39) and (40) constitute four equations in two unknowns. Here, we combine them
so as to ensure their solution is unique. The specific combination strategy adopted here is
the PMCHWT approach [11], which subtracts the second equation from the first equation
in each of Equations (39) and (40), resulting in the smaller system
n x [—jw(,Uqu + ,LLQLQ) J - (ICl + lCQ) M] = —n X EZ1

. 41
—n X [—jw(elﬁl+62£2)M+(IC1+/C2)J] :leHZI ( )

12



3.2.5 Boundary Element Method (BEM)

With the boundary integral equations we derived above, we apply BEM to numerically solve
them. We solve for the unknown currents by applying a Galerkin-type method to convert
Equation (41) into a linear system [12]. First, we discretize the fiber cross-section boundary
I into N line segments and represent both the electric and magnetic surface currents using
the same set of 2N linear basis functions f:

2N 2N

J(p) = Z(IJ)ifi(P)> M(p) ~ Z([M)ifi(p) (42)

i=1 =1

Each basis function is supported over two adjacent elements. The first N of the 2N basis
functions represent z-directed currents, while the other N represent currents that flow on
the fiber surface orthogonal to z.

Substituting the approximation (42) into the system (41) and testing the resulting equa-
tions using the same basis f leads to a matrix equation

Ve
Vi

Ins
I;

ZME ZJE
ZMH ZJH

(43)

where the submatrices are formed from inner products of testing functions with the compo-
nents of (41)

(44)

Here we define the inner product between a pair of vector functions a and b as

(a,b) = /Fa(s) -b(s) ds (45)

This block matrix system has a total dimension 4N X 4N. Z,;g represents the block
where we express M in EFIE (E) using the basis functions f and apply the same set of basis
functions as testing functions. The other blocks are named analogously. Vg and Vy are
the test integrals on the incident electric field and magnetic field. Finally, we solve for the
coefficients I, and I, and we obtain from (42) the surface currents J(p) and M(p), which
are the equivalent surface sources that define the solution to our scattering problem.

Regarding the implementation of Equation (44), we would like to note that:

e The differential operators in £ and K can be rearranged to operate on the basis func-
tions to simplify the computation. Since each basis function is supported over two
adjacent elements and is zero elsewhere, it is convenient to define the basis function
locally instead of globally and conduct the integration with local support.

13



e The evaluation of the integral is done by Gaussian quadrature except for the cases
when the inner integral and outer integral integrate on the same line segment.

e When the inner integral and the outer integral integrate on the same element, the
integral contains the contribution from G(p, p’) where p = p’ and G is singular. In
this case, we apply the small argument approximation of the Hankel function [6]

2 1.1781k
H(()Q)(kx) ~1—j—log (_x) , x—0,
T

5 (46)

and the integral can be computed analytically.

3.2.6 Computing far-field quantities

Having computed the surface currents, we can use the source field relations (Equation (32)
to compute the scattered electric field (Eg) and the scattered magnetic field (H;) on an
observing circle with radius R. The quantity of interest is the azimuthal scattering function,
which describes the distribution of scattered light within the specular cone. As introduced
in Section 2, the time-averaged Poynting vector,

(S) = LRe(E x H"), (47)

is equivalent to vector irradiance in radiometry. It provides a way to compute the azimuthal
distribution from the scattered field.

The quantities we can compute from the simulation include the angular distribution of
scattered intensity per unit length and the absorbed power per unit length.

Scattered intensity The scattered wave is an outward propagating wave. In the far field,
the scattered wave is locally a plane wave, traveling in the direction €;(¢,) = cos0;p(¢,) —
sin 0;z, where p(¢,) is the unit vector in the z — y plane, pointing away from the origin and
forming an angle of ¢, with the x-axis. The surface of constant phase, or wave fronts of the
scattered wave, forms a cone surface.

When we use Equation (32) to compute the scattered field in the far field, we can apply
the asymptotic forms of the 2D Green’s function. In the far field, the limiting expression for
the Hankel function is [1]

-
im  H (klp— p'l) = :

e~ Iklp—p| 48
klp—p'| >0 Wk\p—p’] ( )

Denote p = |p|. When |p| > |p'|, we have |p — p/| = p and |p— p'| = p—p' - p. The
following figure illustrates this approximation. Thus we have

2
lim  HPk|lp— p|) = | =L ikreike"p, (49)
klp—p' | =00 0 ( |p p‘) 7Tk,0

and this can be used to compute the scattered fields in the far field.

14
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Applying the Poynting vector, the scattered intensity per unit length in the far field can
be calculated as

L(6:, 6, ¢, A) = 5Re(By,,, x HY ) - p(¢r), (50)

where p(¢,) is the vector in the z — y plane, pointing away from the origin and forming
an angle of ¢, with the x-axis, with |p(¢,)| much greater than the fiber radius. The total
scattered power per unit length, W, can be obtained by integrating I(¢,.).

Absorption Absorbed power per unit length can be calculated by integrating the normal
component of the total field’s Poynting vector over the boundary, as the net flow at the
boundary is the absorption:

1
W, :/FgRe(El < EL) - 1y (s) ds
= / %RG(JT X Ml) . fll(S) ds.
I

The second equation is derived by applying Equation (15).

3.3 Lorenz-Mie theory

In Section 3.2, we describe how to use BEM to solve the cylinder scattering problem with
arbitrary cross-section shapes. Although BEM has lower complexity than other numeri-
cal methods, it is still expensive as it involves large matrix assembly and solves. In this
subsection we will summarize how to apply Lorenz-Mie theory to solve for infinite circular
scattering problem, which is a special case of the arbitrary cross section cylinder scattering
problem. Mie theory provides an analytic solution to this specific problem and is much more
efficient to compute [2].

Assuming the infinitely long cylinder does not have variation along the cylinder axis, Mie
theory derives the scattered fields everywhere in the space under plane wave incidence. It
starts with the solution of the scalar wave equation

V2 + k%) = 0. (52)
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In cylindrical polar coordinates r, ¢, z, the scalar wave equation is

9

10 1 0% 0%

- ———+ —— + k¥ = 0. 53
T8T<T0T)+T’28¢2+622+ v (53)

The separable solutions ¥, (r, ¢, z) to the above equation are in terms of the solutions to the

Bessel equation. The vector cylindrical harmonics generated by 1, are

_VxP,

P, =V x(2¢), Qu ?

(54)
Then we can write the incident field in the expansion of the generating functions P, s and
Q,s with appropriate Bessel functions. With plane wave incidence we can compute the
desired coefficients in the expansion. Next, we express the total fields inside the cylinder and
the scattered fields in terms of generating functions with appropriate Bessel function so that
the continuity conditions at the boundary can be satisfied, the field at the origin is finite
and the scattered field is an outgoing wave. Finally, by applying the boundary conditions
upon scattering we can solve for all the coefficients in the expansions. The relation between
the scattered field to the incident field is shown in the equation below. At distance R, the
scattered electric field can be written as:

Es j3m/4 2 jk(Reosf—zsing) [ 11 T Ey;
= \/ 55
( E ) c kR cosf' T3 T E |’ (55)

where || denotes TM polarization, i.e. the electric field is in the plane defined by the wave
vector and the cylinder axis; | denotes TE polarization, i.e. the electric field is perpendicular
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to the plane defined by the wave vector and the cylinder axis; and

T, = Z e 7™M = por + 2 Z b1 cos(n(m — ¢)),

n=1

= Z apmre M) = qopp + 2 Z any cos(n(m — ¢)),

n=1

Ty = Z a,re M0 = —9; Z apr sin(n(m — ¢)),
—0 n=1

T4 = Z anG_jn(ﬂ_@ = -2 Z an sin(n(w — ¢)) = —Tg,
n=1 n=1

¢:¢T_¢ia

o _CVa=BuDy o WaBu+iDuCy
"W Vg2 T WV, D2 (56)
= AnVa = iCuDu Gl AD,
" WoVo +jD2 WV + jD2

A = GE LT Tn(&) =1 (1) ()]
By, = &%), (1) Jn(€) — 7 Ju(7) I} (8)]

Cy, = nsin 0y, () Jn(€) (i—z — 1) :

D,, = nsin 0y, (v)HV (€) (i—z — 1) :

Vo = € [0 HD(E) = 1 HP'(E)]
Wo = 3¢ |7 I (VH (€) = € D ()]

In above equations, parameters & = kacosb;, v = kay/n? —sin?6; and a is the cylinder
radius. J,, is the nth order Bessel function of the first kind. Hfll) is the nth order Hankel
function of the first kind. J/, and HY" are the derivatives of J, and g respectively. In
theory we need infinite number of terms (n — oo) in the expansion. However in practice,
we can compute the desired number of terms that can achieve machine precision [16].

In the far field, the scattered intensity per unit length can be calculated as

_ TP A+ T + [T + |Tuf?

Is(0i7¢ia¢m>‘) - Tk (57)

and the azimuthal function is

_ Is(0i7¢i7¢r7)\) — |7ﬁ1|2 + |7—'2|2 + |T3|2 + |T4|2
|W(0;, 05, N 2amk cos 0; '

Nwave(0i7 Qbi, §br, )‘) (58)

For more details of the Mie theory, we refer the readers to [2].
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4 Gaussian beam

A Gaussian beam is a specific kind of electromagnetic wave with its amplitude being a Gaus-
sian function in the transverse plane (the plane perpendicular to the propagating direction).
In optics, a Gaussian beam is often used to model a laser beam. In our work, we validated
the integration of our wave optics azimuthal function into the renderer by comparing the
net effect of the fiber on the far-field radiance distribution. In the wave case, we used a 2.5D
non-paraxial Gaussian beam to compute the net effect. The net effect is the total intensity
minus the incident intensity. Unlike a plane wave, a Gaussian beam is a non-singular incident
distribution, so we can take a meaningful far-field limit and compute the total field inten-
sity minus incident field intensity. In addition, a Gaussian beam does not introduce actual
simulation cost to our computation. One can post-process plane wave simulation results to
produce beam solutions for any beam widths and offset values.

4.1 2.5D Gaussian beam

A non-paraxial 2.5D Gaussian beam satisfies Maxwell’s equations. For simplicity, we first
define a 2.5D Gaussian beam that satisfies the scalar wave equation. The vector form can
be derived from the scalar form and the details are in Appendix A. We adopt the coordinate
system shown in Figure 1 (a), and represent the 3D and 2D coordinates using r = zx+yy+2z
and p = xx + yy. Assume a Gaussian beam with waist w, centered at y. with incident
azimuthal direction ¢; = 0. The ¢; # 0 cases can be easily obtained via rotation. As in the
previous section, k = k, +k.z denotes the direction that is opposite to the wave propagation
direction. At x = 0, the scalar field in the y — z plane is defined as:

_ (y—ye)?
w2

U(0,y, z) = e/*%¢ , (59)
which for any specific z value v is a 1D Gaussian function. Define

_ (y—ye)?

gly) =e . (60)

We denote the Fourier transform of a function g as either g or F[g] and denote the inverse
Fourier transform as F~!. Equation (59) can also be written as

U(0,y,2) = e**F 1 [Flgy)]]
Ly

— ejkzz/ g (ky) e*jkyydky,
where

- 1 o _wye)?
g(’%)Zg/ e vt elfidy

—0o0
uje—k;wQ/46jlcyyC (62>

— NG
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The full expression of the scalar Gaussian beam that satisfies the scalar wave equation can
be written as
U('I? Y, Z) - 6szz/ g (ky) e_Jklze_Jkyydky
—00
_k2 2 j c (63)
= eh=2 /OO we M ety e_jkzme_jkyydkya

W~

where k2 + k7 = k2. We introduce ¢, = arctan(i—i) — arctan(——2—). Then

K2—k2
d k dk dk
dg, = — (arctan(——2t—))dk, = —2— = —~. (64)
dk, N VEE=FkL ks
Apply change of variable to Equation (63) and we get
) /2 —kZw? /4 JkyYe ) )
Ulz,y,z) = ef’“zz/ T L
)2 2/
w/2 —k2(sin? ¢p Jw?/4 ik sin ¢pye
- eﬂczz/ we M o by i e Tko(zeosdptysingr) oo 6 d
_ﬂ—/g 2\/7_7' (65)
: k,w /2 2(ain2 2 : : ; :
_ e]kzz P e—kp(sm (bp)w /4ejkp Slnd)pyce—]kp(xCOS¢p+?JSln¢P) COS¢ d¢
Qﬁ —7/2 pe
_ ke kow [ (e_kg(sinz D0 )W /4 ko sin dpve (o ¢p> e—jkp<xcos¢p+ysin¢p)d¢p
2\/7_T —7/2

In the above equation e 7*»(zcoséptysingn) ig g scalar component of a plane wave. Equation
(65) shows that the beam field can be expanded into a summation of an infinite number
of plane waves (with different incident directions). This is the so-called Angular Spectrum
Method [7] and we will show in the following how to use fast fourier transform (FFT) to
compute the beam incidence solution from a plane wave incidence solution.

4.2 From plane wave incidence to Gaussian beam incidence

Consider a fiber of arbitrary cross section contained in a circumscribing circle of radius a.
Upon illumination by the incident field

E}(p) = Ju(kp)e™?, (66)

where p = 2X + yy, p = |p| and ¢ is the angle between p and the z-axis. The fiber scatters
field Es(p) which for p > a can be expressed in terms of outward propagating Hankel
functions [§]

E(p) =Y bunH(kp)e™ (67)

m=N
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The scattered field is angularly band-limited and N is the required mode number. There
exist many ways of computing the b,,,, s. One could illuminate the scatterer with the incident
fields J,(p)e’™ (as opposed to the traditional plane wave) and compute the projection of
the scattered field onto each outgoing harmonic H,,(kp)e’™? (as opposed to the traditional
far field pattern). Alternatively, the b, s can be computed by post-processing the results
obtained using a code that uses traditional plane wave excitations and computes far-field
patterns.

Assume the fiber is excited by a plane wave comping from direction ¢, = 2w (p—1)/(2N +
1) (uniformly spaced angles) given by

N

N
Eig,(p) = eHtn)e — > 5T (kp)e(90r) = S© jreinen g, (kp)e ™ (68)

n=—N n=—N

By linearity, it follows from Equation (67) that for p > a, this scattered field can be expressed
as

Esg,(p Z G Indr Z by Ho (K p) 2™ (69)

Using the large argument approximation of the Hankel function, this same field (for p > a)
is given by

N N
S jrein / 2 ik im
=—N

et i i —jng 2j —Jjkp pgme
= e " h, Me el

\/ﬁ —Nn=—N kp

—jkp N N :
— e\/ﬁ Z Z ( "By / j e Jkp> eIme o —indyp
— Cmnejm¢e Jn¢p

DD

—Nn=—N

(70)

The last step is to relate the Gaussian beam expression Equation (65) and Equation
(66) by expanding the plane wave component in Equation (65) using Equation (68). Then
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Equation (65) becomes

w/2
Uz, y, 2) = "~ o / <67k‘2’(8m2 0 )0 /4 ko sin éye (o ¢p> efjkp(“‘)s‘ﬁﬁysmd”’)débp

2ﬁ —7/2

w/2

Qﬁ —7/2

N
(e hamtn)fagitosntmme cos g, ) 37 7 (yp)e(*) dg,
n=—N

A N T2 Noa A )
— ejkzsz)%nzjvj_n (/W/Q e_kp(SHI ¢p)w /4 gikpsin épye o —indp g ¢pd¢p> Jn(kpp)ej"d’
N
= Z an Ty (kpp)e™?,
n=—N

(71)

where we write the Gaussian beam in terms of expansion of the Bessel function where a,s
are the expansion coefficients. To compute the Gaussian beam incidence solution, we first
conduct 2D inverse FFT computation on the plane wave incidence solutions to get c¢,,S.
Then from ¢,,,s we can compute b,,,s based on Equation (70). Finally we weight b,,,s by
a,s and conduct FFT to compute the Gaussian beam solution.

In the figure on the next page, we draw fields for Gaussian beam illuminating circular
cross sections.
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(a) Re(E;), z component (b) Re(Es), z component (c) Re(E;), z component

270° 270° 270°

(d) Re(E;), z component (e) Re(Es), z component (f) Re(E;), z component

Figure 4: In this figure, we plot the fields for Gaussian beams illuminating circular cross
sections. In the first row, we have a circle with radius 1pum and a Gaussian beam with
waist Hum. In the second row, we have a circle with radius 10um and Gaussian beam with
waist 1um and a center offset 5um. In both cases, Gaussian beams have wavelength 400nm
and TM polarization. They are normally incident on the circular cross sections. We plot
the real part of the z component of the electric fields. Non-positive values are shown as
black. The first column is the incident field, the second column is the scattered field, and
the third column is the total field. When the beam is wide (first row) it can be used to
approximated plane wave incidence. When the beam is narrow (second row), the scattering
pattern is similar to what we usually observe in ray optics despite the field oscillation and
beam divergence.
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A Vector fields derivation

We can construct a vector field representation from a scalar field. Assume 1 satisfies the
scalar wave equation V21 + k%) = 0. For TM polarization, we construct the electric field
and magnetic field components as [8]:

1 0%y 1 0% 1, 0%
E,=—-——— =—— " E,=—(=— + v,
0x0z" Y §0yoz’ Q(022 R
oY oY
H=—H=——H,=0,
oy’ Y ox
1 = Jwe.
So
Jjwe Jjwe
1 k,k
E, = —(k,)(jk) = ——2L=
y wa(J y) (Jk2)Y e Y,
1 k2
Ez = _<k2 - k§>w = —p¢7
Jjwe Jwe
H:c :jkyqvbv
Hy = _jkm¢7
H,=0.

If we let E, be the scalar Fourier component U in Equation (65), then we have

E.jwe Ujwe
b= 2 k2
P P
B - kik. Ujwe  —sinf cos U
Y jwe k2 B cos 6
g - kyk. Ujwe  —sinfsin U
Y jwe k3 N cosf
~ singUwe
“ kcosf
_ cospUwe
Y kcosf
H,=0

24



For TE polarization, we construct the electric field and magnetic field components as [8]:

o O
E:E:__7E :_7Ez: )

oy’ Y Oz 0

1 0% 1 0% 1.0
He= S om0e = 3p0. 1 = 3ga THY
Z=jwu

If we let H, be the scalar Fourier component U in Equation (65), then we have

_ Hjop  Ujwp

77/} = =
ks ko
sin pUwt
E. =7 "
‘ kcos 6
cos pUwp
E = _———7*F
Y k cos @
E,.=0
kpk,Ujwe  —sinf cos U
H,=—— =
jwe k2 cosf
kyk, Ujwe — —sinfsin pU
Hy = —— ) =
Jwe k3 cos
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