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Fig. 1. This figure demonstrates reflectance spectrum reconstruction from an RGB image. We first obtain a candidate spectrum through differentiable
rendering, then apply our null-space sampling method to generate multiple spectra that produce the same RGB color. From these samples, we compute
both the mean spectrum and the spectral standard deviation across wavelengths. Our sampling method enables uncertainty quantification in the spectral
reconstruction and guides additional measurements that significantly reduce uncertainty and improve reconstruction accuracy.

Spectral information plays a crucial role in many domains, including remote
sensing, cultural heritage analysis, food inspection, and material appearance
modeling. Spectral measurements, such as hyperspectral imaging, provide a
powerful means of acquiring this information but often require expensive
equipment and time-consuming capture procedures.

We propose a new method for recovering spectral information from
multispectral images using differentiable rendering, which naturally incor-
porates 3D geometry and light transport. However, the inverse problem is
ill-posed: conventional pipelines produce a single spectrum that may differ
significantly from the ground truth. To address this ambiguity, we intro-
duce a spectral upsampling framework based on null-space sampling, which
generates multiple candidate spectra consistent with the input multi-band
image. This enables uncertainty quantification across wavelengths and in-
forms the design of additional measurements to improve reconstruction. We
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also demonstrate how to incorporate interreflections into the algorithm to
enhance reconstruction accuracy.

We validate our method on synthetic scenes using real-world spectral
data and RGB renderings, and demonstrate its effectiveness in physical
experiments. Our approach not only avoids the cost and complexity of
hyperspectral imaging, but also significantly accelerates the reconstruc-
tion process compared to brute-force methods that treat each wavelength
independently. Moreover, it supports spectral material authoring by gener-
ating diverse, physically plausible spectra from a single RGB input, enabling
greater flexibility and artistic control in spectral rendering.
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1 INTRODUCTION

Spectral information is crucial for studying material substances,
with wide-ranging applications across science and engineering, in-
cluding analytical chemistry [Harris 2010], remote sensing [Chang
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2013], cultural heritage preservation [Kim et al. 2014], and biomed-
ical research [Offerhaus et al. 2019]. In computer graphics, spec-
tral rendering has proven essential for achieving higher realism
and is increasingly adopted in both research and production ren-
derers [Weidlich et al. 2021]. Representing materials with spectral
reflectance allows their appearance to be more accurately preserved.

Acquiring spectral properties of real-world materials is challeng-
ing. Point-wise spectroscopy works well for spatially uniform mate-
rials but falls short in scenarios with spatial variation. In such cases,
hyperspectral imaging (HSI) becomes essential, capturing hundreds
of contiguous spectral bands that encode both spectral and spatial
information. However, HSI systems are expensive, slow to operate,
and require complex calibration procedures.

To obtain spectral information more efficiently, a recent trend in
the computer vision community is to infer spectra from RGB images.
This line of research generally falls into two categories: prior-based
methods and deep learning-based methods. Prior-based approaches
rely on smaller datasets and use known spectral response functions
(SRFs) along with hand-crafted priors that capture the statistical
properties of the data. In contrast, data-driven methods often achieve
higher accuracy but require large amounts of training data to learn
the underlying mapping. We refer readers to [Zhang et al. 2022] for
a comprehensive survey on this topic.

Spectral information extraction methods from the vision and HSI
communities operate only at the image level and often lack physical
interpretability, as illumination is entangled with material appear-
ance and global illumination effects are not properly handled. In
contrast, we propose a novel approach that leverages differentiable
rendering to reconstruct reflectance spectra from multispectral or
RGB images. As a physically grounded framework, differentiable
rendering naturally accounts for global illumination and enables the
joint reconstruction of shape, material properties, and other scene
parameters. Moreover, interreflections embedded in the rendering
process help disambiguate the spectral reconstruction problem.

Reconstructing spectra from multispectral input is inherently
ill-posed, as a single multi-band observation can correspond to infin-
itely many spectral solutions—a phenomenon known as metamerism.
Existing differentiable rendering frameworks yield only one esti-
mate, which may still deviate from the ground truth despite global
illumination constraints. To address this, we propose a null-space
sampling method that generates a family of plausible spectra, en-
abling uncertainty quantification and guiding additional measure-
ments to improve reconstruction.

Our method is versatile, supporting the integration of light spec-
tra, additional priors, and interreflection constraints—all of which

improve reconstruction. Since reflectance spectra are typically smooth,

with higher-order details exhibiting lower amplitudes, we use B-
spline functions for compact representation. To avoid ill-posedness
while capturing fine details, we introduce an adaptive basis refine-
ment strategy: starting with a coarse basis to estimate the primary
structure, we then refine the residual using a finer basis.

We validate our method on synthetic scenes using real-world
spectral data and RGB renderings, and further demonstrate its effec-
tiveness through physical experiments. Compared to hyperspectral
imaging, our approach avoids complex acquisition and significantly

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

speeds up reconstruction over brute-force methods that optimize
each wavelength independently.
Concretely, our main contributions are:

e A constrained null-space sampling method that generates
multiple plausible reflectance spectra from differentiable ren-
dering outputs, enabling uncertainty quantification and guid-
ing additional measurements.

e Enhancement techniques that incorporate light spectra, in-
terreflections, and adaptive basis refinement to improve re-
construction accuracy.

e A method which can be used for spectral upsampling, provid-
ing greater flexibility and artistic control in spectral render-
ing.

2 RELATED WORK

Our work combines spectral reconstruction and differentiable ren-
dering and we will review related work from these two perspectives.

2.1 Spectral Reconstruction and Spectral Uplifting

Image-based Spectral Reconstruction. Many methods for recovering
lost spectral information efficiently from RGB images in computer
vision rely on representation learning [Aeschbacher et al. 2017;
Akhtar and Mian 2018; Arad and Ben-Shahar 2016; Duan et al. 2024;
Geng et al. 2019; Jia et al. 2017], where a spectral dictionary is
built from HSI data and projected into RGB space using SRFs. The
resulting RGB dictionary is then used to reconstruct HSI from RGB
inputs. Recent advances in deep learning have further improved
reconstruction quality [Alvarez-Gila et al. 2017; Can and Timofte
2018; Li et al. 2020; Stiebel et al. 2018; Xiong et al. 2017]. While these
data-driven approaches achieve high fidelity, they require large
HSI training datasets and lack physical interpretability. Another
related problem in HSI is extracting the pure spectral signatures of
objects from hyperspectral inputs [Chang 2013, p. 13], [Xue et al.
2017; Zhao et al. 2014]. All these methods operate solely on 2D
images, whereas our approach incorporates 3D geometry through
differentiable rendering.

Spectral Uplifting in Computer Graphics. Spectral rendering has
been adopted in research and production renderers [Fascione et al.
2018; Jakob et al. 2022; Pharr et al. 2023; Weidlich et al. 2022]. It is
also essential to render wave optical effects [Steinberg 2023; Xia et al.
2023b, 2020, 2023a; Yan et al. 2018; Yu et al. 2023]. Using spectral
renderers requires converting RGB assets into spectral represen-
tations. Early spectral uplifting work includes pioneering studies
by MacAdam[1935], Peercy[1993], and Smits[1999]. Recent efforts
have explored compact spectral representations [Jakob and Hanika
2019; Meng et al. 2015; Otsu et al. 2018; Peters et al. 2019]. Tédova
et al. [2022] introduced constrained uplifting, focusing on appear-
ance under varying illuminants, while van de Ruit and Eisemann
[2024] addressed interactions between multiple light sources and
indirect illumination. Belcour et al. [2023] proposed a technique
that generates a set of spectral solutions from an RGB input. While
their approach is the closest to ours, our method generalizes to mul-
tispectral input beyond RGB and avoids failure cases where their
greedy algorithm produces no valid solution.
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Fig. 2. We demonstrate the ability of B-splines to represent real-world spectra by fitting paints of various colors, as well as dry land and leaf spectra, using
different numbers of coefficients. The data are from Kremer Pigments [Deborah 2022] and EcoSIS plant and forest spectra [Wagner et al. 2018].

2.2 Differentiable Rendering

Differentiable rendering is a powerful approach for jointly recon-
structing shape, material properties, and other scene parameters
while accounting for full light transport. Early works [Bangaru et al.
2020; Li et al. 2018; Loubet et al. 2019; Zhang et al. 2019, 2021] fo-
cused on computing derivatives in various contexts. Subsequent
research [Nimier-David et al. 2020; Vicini et al. 2021; Xu et al. 2023;
Yan et al. 2022; Yu et al. 2023; Zhang et al. 2023] has concentrated
on improving the efficiency of derivative estimation. One challenge
in differentiable rendering, and optimization problems in general,
is exploring multiple optima in the solution landscape. Our work
addresses this issue in the specific context of spectral reconstruction
from multispectral images.

3 METHOD

Our goal is to reconstruct the reflectance spectrum or spectra S(1)
of one or more materials from multispectral image captures. We first
review the spectrum-to-multiband projection and B-spline repre-
sentation, and then introduce our spectral reconstruction algorithm
based on null-space sampling.

3.1

Assume we are given a multispectral imaging system with K spectral
bands. The response v; for each band i is computed as

Spectral Integration and B-Spline Representation

K ®
where M; (1) is the sensitivity function for the ith band. For RGB
renderings and captures, M refers to the color matching functions
and the camera sensitivity functions respectively, and K = 3. The
wavelength range A lies within the visible spectrum, where we use
400-700nm in practice.

v = //\S(A)Mi(/l)d)\., i=1,..

We represent the spectrum using B-splines because they are nat-
urally smooth and allow the reflectance spectrum to be easily con-
strained to the range [0, 1] by bounding the B-spline coefficients.
Specifically, we express the spectrum as a weighted sum of N basis
functions Bj(A) defined over the wavelength range A with nonneg-
ative coefficients c;:

N N
S() = Z ¢jBj(1), where ZBj(A) =1, VYieA (2
= =1

The partition of unity property of B-Spline functions ensures that

N
Vie[LN] cje[0.1] = S() =Y ;B e[0.1]. (3)

J

So we only need to constrain the coefficients to produce a physically
plausible reflectance spectrum.

3.2 Spectral Reconstruction and Null-Space Sampling

To reconstruct the reflectance spectrum, we first use differentiable
rendering to iteratively update the basis coefficients cj, converging
to a plausible spectral solution consistent with the multiband image
input. However, spectrum reconstruction from multiband data is
inherently ill-posed. For instance, RGB input provides only three
channels, while accurately representing real-world spectra often
requires five or more coefficients (Figure 2). As a result, the solution
obtained through differentiable rendering can deviate significantly
from the ground truth.

We propose a spectral upsampling technique based on null-space
sampling that generates multiple candidate spectra and quantifies
uncertainty across wavelengths. Spectral integration is expressed
in matrix form using a B-spline representation. Assume we sample
P points in the wavelength range. Let B € RPN denote the matrix
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that maps the coeflicient vector ¢ to the sampled spectrum S, and
let M € RKXP be the matrix projecting the full spectrum to the
multi-band oberservation y. Thus we have:

Bi,szj(Ai): i=1,...,P, j=1,...,N,
Mi,j =Mi(/1j)5().j)A/1, i=1....K, j=1,...,P,
4
S =Bg, @)

y = MS = MBc = Ac,

where AA is the wavelength step size and A = MB.

Given the multi-band value y*, obtained from the spectral solution
via differentiable rendering, we aim to solve Ac = y* subject to the
constraint ¢ € [0, 1]N . When the system is underdetermined, there
are infinitely many solutions. The entire space of coefficient vectors
that produce the same y* can be expressed as

c=cy+Nz (5)

where ¢y is a particular solution, N € RVXP spans the null space of
A, capturing the degrees of freedom that leave Ac unchanged, and
z € RP contains the free parameters with D = N — K. The solution
¢ must satisfy ¢ € [0,1]V.

We achieve this by sampling feasible vectors z such that the
reconstructed spectrum coefficients ¢ = ¢o + Nz stay within the
bounds [0, 1]V, The full algorithm proceeds in the following steps:

(1) Acquire a specific solution cy: Either use the coefficients
obtained from differentiable rendering as ¢, or run a linear
least-squares solve to determine cg.

(2) Compute valid ranges for each dimension of z: For each
dimension i of z, compute the lower and upper bounds that
ensure all entries of ¢ = ¢y + Nz remain between 0 and 1. This
is done element-wise by solving for intervals where

ci =co,i + (Nz); € [0,1].

The bounds are clipped to a reasonable range (e.g., [-10°, 103])
to avoid numerical instability.
(3) Sample uniformly within bounds: After computing the
valid intervals [Zmyin, Zmax] for each dimension, generate a
set of z samples uniformly within those bounds.
Filter Infeasible Samples:
For each sampled z, compute the corresponding ¢ = ¢ + Nz.
Retain only those samples where all components of c lie
within [0, 1].

—
N
ol

Quantify Uncertainty. After we acquire the z samples, we can
compute the B-Spline coefficients and each of the sampled spectra
St

¢l =¢o+Nzl, S’ =Bc. 6)

Then we can compute the mean spectrum S(1) and standard devia-
tion o(A) of the sampled spectra as functions of A:

T T
- 1 ; 1 i a 2
S =5 )8, P =2 ) (s7-50) 7
()T;m G()T; 0 ™
The standard deviation in Equation 7 quantifies the reconstruction
uncertainty. In our experiments, both metrics converge after ap-
proximately 1,000 samples.
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Fig. 3. The ground truth spectra are the blue and red curves. Considering
self-reflection (the green and brown curves) improves the accuracy of the
sampled spectra.

3.3 Enhancements to the Baseline Algorithm

We will describe three enhancements to the baseline algorithm to
further improve the reconstruction accuracy.

3.3.1 Incorporating the Light Source Spectrum. Real captures are of-
ten conducted in a controlled environment where the light spectrum
L(A) is known. To incorporate this, we update the computation of
M as follows:

M;;j = Mi(Aj)S(A))L(Aj)AX, i=1,...
which in turn changes A.

3.3.2 Incorporating Additional Constraints. Reconstruction accu-
racy can be further improved by incorporating additional constraints.
For example, we can guide supplementary measurements at specific
wavelengths where the baseline upsampling results exhibit high un-
certainty. To achieve this, we define a loss function at the additional
wavelengths as

L= Z IS(A:) = S* (A1, )

where S*(1;) denotes additional info at wavelength A;. We then use
this loss to rank the sampled spectra and select the top K candidates,
where K is a user-defined parameter. In the last columns of Figure
1 and Figure 4, we show that adding measurements at 400 nm and
700 nm — where the uncertainty is highest — significantly improves
the spectral reconstruction.

Another effective way to enhance reconstruction accuracy is to
account for interreflections, either within a single object or between
multiple objects. We define a loss function based on the multispec-
tral responses y; obtained under interreflection, and select the top
candidates by minimizing this loss:

L= lly-viI* (10)

The responses y; are computed by multiplying the spectral outputs
of differentiable rendering and then converting the result to RGB.
If we use only the RGB values derived from the spectral output of
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Fig. 4. We evaluate single reflectance spectrum reconstruction on spectral examples with different characteristics. We first obtain a candidate spectrum
through inverse rendering. We then generate multiple spectra that produce the same RGB color using our method, and compute both the mean spectrum and
the spectral standard deviation (STD) across wavelengths. This sampling process enables uncertainty quantification in the spectral reconstruction and guides
additional captures to improve accuracy.

differentiable rendering, the upsampled spectra may fail to preserve o Function-space Gram matrix G = B;B T
the 1ntF:rreﬂect10n effects. Figure 3 shows that incorporating inter- We want to lift the coarse solution to a fine one and explore addi-
reflection improves the accuracy of the sampled spectra, and the

o tional degrees of freedom. This is achieved as follows:
mean spectrum becomes significantly closer to the ground truth.
(1) Coefficient Lifting: Lift the coarse solution into the fine

3.3.3 Adaptive Basis Refinement. We observe that higher-order basis:

variations in real-world spectra typically have much smaller ampli- cpo = Tee, (11)
tudes than lower-order components. Naively increasing the number

of B-spline coefficients can make the reconstruction problem more where
ill-posed and often results in higher uncertainty. To address this, we T = argmin ||B fT - Bc”%:' =T= B}Bu (12)
propose an adaptive basis refinement strategy: we first estimate the T
coefficients using a coarse set of basis functions. Then given and B, is the Moore—Penrose pseudoinverse of B.
e A set of coarse coefficients ¢, € RNe (2) Residual Subspace: Choose any G-orthonormal basis Q.
e A coarse basis matrix B, € RP*Ne of the lifted coarse span, so Q] GQ. = I and span(Q.) =
o A fine basis matrix By € RPXNF with Nf > Ne span(T). Complete it to a G-orthonormal basis [Q.; Q ]
¢ A measurement matrix Ar = MB¢ € RKXNf [0 0.]"G[Q.Q.] =L (13)
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(3) Refined Nullspace: Restrict the measurement operator to
the residual subspace compute the null:
S =ArQ eRF Ny = null(9). (14)
The valid refinement directions in coefficient space are

RNFXd g = dimnull(S).  (15)

Nresidual = QLN €
(4) Final Solution: Construct the full solution by adding a resid-
ual perturbation to the lifted coarse solution:
¢f = ¢fo + Nresidual Z (16)
where z parametrizes the residual degrees of freedom.

Figure 5 demonstrates that lifting the coarse solution to a denser
basis, followed by sampling of the residual degrees of freedom,
improves upon the results obtained by directly sampling in the
fine-basis representation.
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Fig. 5. Adaptive basis refinement can improve on the results obtained by
directly using a fine basis representation.

3.4 Comparison with Previous Work

Belcour et al. [2023] proposed a method for generating multiple
spectral solutions from RGB input. Compared to their approach,
our method offers two main advantages: (1) we support general
multispectral inputs beyond RGB, whereas they rely on chromaticity
and luminance conversion and is therefore limited to RGB; (2) we
use a general null-space sampling approach, while they use a greedy
algorithm to iteratively sample each B-spline coefficient, which often
fails to produce valid solutions unless the number of coefficients is
small. In our experiments, their method often struggles to produce
solutions when fitting real spectra with 7 or more coefficients. For
example, their method fails to generate any solutions for upsampling
the RGB values corresponding to the spectrum in Figure 8 when
using 7 or more coefficients.

4 RESULTS

We first validate B-spline fitting on real-world spectral reflectance
data, then perform spectral reconstruction using synthetic scenes in
Mitsuba 3. Finally, we demonstrate the effectiveness of our algorithm
through physical experiments.
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4.1 B-Spline Fitting
To validate that spectral reflectance data can be accurately repre-
sented using B-splines, we fit known spectra from Kremer Pigments
[Deborah 2022] and EcoSIS plant and forest spectra [Wagner et al.
2018]. We used cubic B-splines with a uniform knot vector and end-
point multiplicity of 4 to ensure clamped boundaries, and varied the
number of coefficients to assess the accuracy of the fitting (Figure 2).

As expected, increasing the number of control points improved
the fitting accuracy. Smoother spectra, such as those from the paint
dataset, could be approximated with fewer coefficients, while more
complex natural spectra from EcoSIS and certain fluorescent pig-
ments required greater flexibility for accurate interpolation. The
quadratic representation used in [Jakob and Hanika 2019]—the de-
fault spectral upsampling method in Mitsuba 3—is often inadequate
for representing real-world spectra.

While not comprehensive, this validation demonstrates the ability
of our B-Spline approach to fit broad classes of material reflectance
spectra.

4.2 Spectral Reconstruction Using Synthetic Scenes

Single Spectrum Reconstruction. In Figures 1 and 4, we evalu-
ate single-spectrum reconstruction across a variety of spectra with
different characteristics. We first generate the reference image using
the ground-truth spectrum. We then obtain a candidate spectrum
through differentiable rendering, where each spectrum is repre-
sented using either 5 or 7 coefficients, with the optimization initial-
ized from zero coefficients (corresponding to a black appearance).
The blue curve shows the ground-truth spectrum, while the or-
ange curve represents the spectrum obtained through differentiable
rendering.

We then apply our null-space sampling method to generate spec-
tra (30k-80k valid samples out of 100k trials) that produce the same
RGB color. We compute both the mean spectrum (green curve) and
the spectral standard deviation (purple curve) across wavelengths,
enabling uncertainty quantification in spectral reconstruction.

Based on the computed uncertainty, we introduce two additional
measurements at 400nm and 700nm. Uncertainty is typically highest
at the ends of the wavelength range, where the sensitivity functions
are low and spectral variations have minimal impact on the final
RGB values. Using single-wavelength reconstruction at these points,
we filter the sample set by selecting the top 10k candidates that
best match the additional values. In the last two columns of the
figure, we plot the first 30 samples before and after introducing
these measurements, with the gray region indicating the range
covered by all selected samples. We observe a significant reduction
in uncertainty, and the mean spectrum becomes much more accurate.
The updated mean spectrum and standard deviation are shown as

red and brown curves in the first column.

Joint Spectrum and Shape Reconstruction. Figure 6 demon-
strates the joint reconstruction of shape and spectrum. Starting
from a black sphere, differentiable rendering successfully recov-
ers both the shape and appearance, matching the observed RGB
color. We apply the large-step method [Nicolet et al. 2021] along
with a coarse-to-fine geometry refinement strategy. Our spectral
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Fig. 8. We perform brute-force spectral reconstruction on the orange box in the Cornell box scene. The brute-force method achieves good accuracy but takes

7.1 times longer to run.
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sampling algorithm further quantifies the uncertainty in the recon-
structed spectrum. In the middle column, the orange curve shows a
B-spline fit directly to the ground-truth spectrum, illustrating the
ideal reconstruction achievable with the current representation.

Spectral Reconstruction with Interreflection. Figure 7 illus-
trates the influence of interreflection on spectral reconstruction.
We recover the spectra of the blue and yellow walls in the Cornell
Box scene. The first row considers only direct illumination; in this
case, the spectral solution obtained from differentiable rendering
(orange curve) deviates significantly from the ground truth (blue
curve). In contrast, the mean spectrum of the samples generated by
our algorithm is much closer to the ground truth than the inverse
rendering result. Note that in this test, the initial coefficient ¢y used
in Equation 5 and for sampling the spectra was computed by a lin-
ear least-squares solve, rather than taken directly from the inverse
rendering, which results in more accurate spectral estimations.

The second row shows reconstruction with global illumination
enabled, where the spectral solution from inverse rendering is sub-
stantially more accurate compared to the direct-illumination case.
In the spectral curve plots, we also show the mean spectrum of the
samples generated using the ground-truth RGB color of each wall,
highlighting that sampling accuracy is influenced by the errors in
the inverse rendering result.

Comparison with Brute-Force Reconstruction. The brute-force
method for reconstructing reflectance spectra while accounting for
3D geometry and light transport involves capturing hyperspectral
images and applying differentiable rendering to reconstruct each
wavelength independently. We simulate this process by first per-
forming forward rendering using the ground-truth spectrum and
the monowavelength variant in Mitsuba 3, then optimizing the
reflectance value at each wavelength for the box

Figure 8 compares the results of the brute-force method with our
B-spline-based method, which reconstructs the spectrum from RGB
input. On the left, we show the single-wavelength reconstruction
results at 400nm and 700nm using the brute-force method, along
with the corresponding RGB images produced by both the brute-
force and B-spline methods.

In the spectral curve plot, we observe that the mean spectrum (red
curve) of the samples generated from the B-spline-based solution
achieves higher accuracy than the direct inverse rendering result
(green curve). Although the brute-force spectral solution (orange
curve) is more accurate, it requires 8.7 minutes to compute on an
RTX 4090 GPU, and is 7.1 times longer than the B-spline-based
method (1.2 minutes), which uses Mitsuba’s spectral mode with the
sampling method from [Radziszewski et al. 2009]. Alternatively, the
hero wavelength sampling method [Wilkie et al. 2014] can be used.
The sampling step in our method takes only 0.001 seconds.

Comparison with Image Based Methods. Many methods for
recovering spectral information efficiently from RGB images in com-
puter vision rely solely on 2D images and do not take global illumi-
nation and 3D geometry fully into account. We evaluated the NTIRE
2022 Spectral Reconstruction Challenge winning method [Cai et al.
2022] on the filigree example in the teaser. Their method outputs
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a hyperspectral image, from which we extract the spectra corre-
sponding to the filigree. The mean error between our reconstructed
spectra and the ground truth is 0.0810 (over 90k spectra), compared
to 0.4033 (over 11k spectra) for their method. Figure 9 shows that
the mean spectrum and spectral samples from their method differ
significantly from the ground-truth spectrum. It is worth noting
that image-based methods do not disentangle lighting from material
properties — making this white light setting effectively their easiest
test case.

4.3 Physical Experiments

For physical validation, we constructed a Cornell Box with 16-inch
interior dimensions and applied Valspar® paints to all interior sur-
faces. The ground-truth spectra of the painted surfaces, objects, and
the light source (an iPhone flashlight) were measured using an ASD
FieldSpec Pro spectroradiometer (Analytical Spectral Devices, Inc.,
USA).

Sensor Sensitivity and Illumination Calibration. The default sen-
sitivity function used in Mitsuba for converting spectral to RGB
is the CIE-1913 color matching function. To account for the real
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Fig. 9. This figure compares the mean spectra of [Cai et al. 2022] and our
method; it also shows the spectral samples from their method.
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Fig. 10. This figure shows the measured light spectrum and the fitted sensi-
tivity functions (both normalized), as well as the captured ColorChecker
chart and the rendered one.
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sensitivty function of the Sony a7 Il camera we used, we fitted cus-
tomized sensitivity functions. Specifically, we took a photo of the
ColorChecker (Macbeth) Chart, illuminated using the same light
source and captured using the same camera. We acquired the spectra
of the color grids from [Pascale 2023] where they report the average
data derived from measurements of 30 charts.

We assume that all the grids have diffuse BRDF. For each grid,
we integrate the outgoing radiance E(A) over a patch A:

E(}) = /A Li()t)@ CO:ZQ" dA, 17)

where L;(A) is emitted radiance from the light, 0; is the incident
angle, and r is the distance from the light source to the integrated
point. We extract the average RGB color of the patch from the
captured photo.

We estimate the spectral sensitivity functions of a 3-channel
sensor using B-Spline basis functions. Let B € RP*N be a matrix
of basis functions sampled over P wavelengths. There are 24 color
grids with known spectra and let S; € R? be the i-th reflectance
spectrum associated with a ground truth RGB value y;. In practice
we set P = 400 and we solve for 10 B-Spline coeflicients for each
channel. The predicted RGB values are:

#;=S/Bcg, i =S/ Bcg, bi =S]Bep (18)

We solve for the weight vectors cg, ¢g, cg by minimizing the total
squared error:

A 2
N ri ri
c r{:linc 9i| = gi ’ (19)
R:CG>CB b; b;

subject to boundary conditions:

bIOOCQ =0, b;—oocQ =0, forQ € {RG,B}

These constraints ensure that the sensor sensitivities are zero at
400nm and 700nm, enforcing realistic falloff near spectral bound-
aries.

The spectral irradiance of the light source was measured. To
convert it into emitted radiance for use in the rendering scene,
we performed differentiable rendering to optimize a scale factor
for the light. Figure 10 shows the normalized light spectrum, the
fitted sensitivity functions, and both the captured and rendered
ColorChecker chart.

Results. Figure 11 presents the results of the physical experiments.
In each of the three setups, a cube painted in a different color is
placed inside the Cornell box. We jointly reconstruct the spectra of
the walls and the cube. The first three rows show the captured pho-
tos, renderings after spectral optimization, forward renderings using
measured spectra, and spectral loss during optimization. Renderings
with ground-truth spectra show slight mismatches with the photos,
providing a visualization of the cumulative effect of measurement
errors in the spectral reflectances, source emission, and sensitivity
function. The bottom three rows display the spectral curves and
sampled spectra for the colored walls and cubes. Our method en-
ables uncertainty quantification, and the mean spectrum for the
green wall reconstruction is significantly more accurate than that
from inverse rendering within the interior range of wavelengths.

Note that measurement errors reduce the accuracy of the inversion
compared to synthetic results. Since the upsampling step assumes
the differentiable rendering spectrum to be RGB-faithful, these er-
rors also propagate into the upsampling results. This highlights the
particular importance of uncertainty quantification in real-world
scenarios.

5 DISCUSSION AND CONCLUSION

This paper presents a novel approach that leverages differentiable
rendering to reconstruct reflectance spectra from RGB and general
multispectral images. By naturally accounting for light transport
and geometry, our method recovers physically plausible spectra. To
address the inherent ambiguity in mapping multiband observations
to full spectra, we introduce a null-space sampling technique that
generates plausible spectral candidates and quantifies uncertainty
across wavelengths. We further propose enhancement techniques
to improve reconstruction accuracy. The method is validated on
both synthetic scenes and real-world experiments. Compared to
traditional hyperspectral imaging, our approach eliminates complex
acquisition procedures and significantly accelerates reconstruction
compared to brute-force methods. It can also be applied to spectral
upsampling in spectral rendering.

Limitations and Future Work. Our work opens new avenues for
follow-up research at the intersection of differentiable rendering and
spectral reconstruction. Future directions include reconstructing
illumination spectra, handling non-smooth spectra, and optimizing
reconstruction setups to improve spectral recovery. Knowing the
appropriate number of coefficients in advance improves reconstruc-
tion and reduces uncertainty, whereas we currently assume this
value. Finally, our method operates as a post-processing step after
inverse rendering; an interesting direction is to integrate it directly
into the differentiable rendering pipeline to enable a more principled
exploration of multiple solutions during optimization.
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